On exponent matrices of tiled orders

M. Dokuchaev

in collaboration with

G. Kudryavtseva, V. Kirichenko and M. Plakhotnyk.

A ring Λ is called a tiled order if Λ is a prime Noetherian semi-prefect semi-distributive ring with non-zero Jacobson radical. Any tiled order can be constructed from a (non-necessarily commutative) discrete valuation ring and an exponent matrix. The latter means a square integer matrix $A = (\alpha_{p_{ik}})$, whose diagonal entries are equal to zero, and for all possible indices i, j, k, the following inequality holds:

$$\alpha_{ij} + \alpha_{jk} \geq \alpha_{ik}.$$

Every tiled order Λ is isomorphic to a ring of the form

$$\Lambda = \sum_{i,j=1}^{n} e_{ij}(\pi^{\alpha_{ij}} O) \subseteq M_n(O),$$

where $n \geq 1$, O is a (non-necessarily commutative) discrete valuation ring with prime element π, (α_{ij}) is an exponent matrix, $e_{ij}(\pi^{\alpha_{ij}} O) = \{e_{ij}(a), a \in \pi^{\alpha_{ij}} O\}$ and $e_{ij}(a)$ is the $n \times n$-matrix whose unique non-zero entry a is placed in the (i, j)-position.

We shall present some results in collaboration with G. Kudryavtseva, V. Kirichenko and M. Plakhotnyk. In particular we endow the set of non-negative exponents matrices E_n with the following two operations: the component-wise addition, which we denote by \circ and the component-wise maximum, which we denote by \oplus. It follows that $(E_n, \circ, \oplus, 0)$ is a max-plus algebra of matrices where 0 denotes the zero matrix. Most of usual axioms of an idempotent semiring hold in this algebra: both operations are associative, commutative, 0 is the neutral element with respect to each of these operations, \oplus is idempotent and \circ distributes over \oplus.

One of our results provides a basis for this max-plus algebra.

References

Departamento de Matemática, Universidade de São Paulo, Brazil