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Some properties of the
Cremona group

Julie D�eserti

Abstract. We recall some properties, unfortunately not all, of the Cre-
mona group.

We �rst begin by presenting a nice proof of the amalgamated product
structure of the well-known subgroup of the Cremona group made up of the
polynomial automorphisms of C2. Then we deal with the classi�cation of
birational maps and some applications (Tits alternative, non-simplicity...)
Since any birational map can be written as a composition of quadratic
birational maps up to an automorphism of the complex projective plane,
we spend time on these special maps. Some questions of group theory are
evoked: the classi�cation of the �nite subgroups of the Cremona group and
related problems, the description of the automorphisms of the Cremona
group and the representations of some lattices in the Cremona group.
The description of the centralizers of discrete dynamical systems is an
important problem in real and complex dynamic, we describe the state of
the art for this problem in the Cremona group.

Let S be a compact complex surface which carries an automorphismf
of positive topological entropy. Either the Kodaira dimension of S is zero
and f is conjugate to an automorphism on the unique minimal model of
S which is either a torus, or a K3 surface, or an Enriques surface, or S is
a non-minimal rational surface and f is conjugate to a birational map of
the complex projective plane. We deal with results obtained in this last
case: construction of such automorphisms, dynamical properties (rotation
domains...).

2010 Mathematics Subject Classi�cation: 14E07, 14E05, 32H50, 37F10,
37B40, 37F50.





3

Dear Pat,
You came upon me carving some kind of little �gure out of wood

and you said: \Why don't you make something for me ?"
I asked you what you wanted, and you said, \A box."
\What for ?"
\To put things in."
\What things ?"
\Whatever you have," you said.

Well, here's your box. Nearly everything I have is in it, and it is
not full. Pain and excitement are in it, and feeling good or bad and
evil thoughts and good thoughts { the pleasure of design and some
despair and the indescribable joy of creation.

And on top of these are all the gratitude and love I have for you.
And still the box is not full.

John

J. Steinbeck
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Introduction

The study of the Cremona group Bir(P2), i.e. the group of birational
maps from P2(C) into itself, started in the XIXth century. The subject
has known a lot of developments since the beginning of the XXIth century;
we will deal with these most recent results. Unfortunately we will not be
exhaustive.

We introduce a special subgroup of the Cremona group: the group
Aut( C2) of polynomial automorphisms of the plane. This subgroup has
been the object of many studies along the XXth century. It is more rigid
so is, in some sense, easier to understand. Indeed Aut(C2) has a structure
of amalgamated product so acts non trivially on a tree (Bass-Serre the-
ory); this allows to give properties satis�ed by polynomial automorphisms.
There are a lot of di�erent proofs of the structure of amalgamated product.
We present one of them due to Lamy in Chapter 2; this one is particularly
interesting for us because Lamy considers Aut(C2) as a subgroup of the
Cremona group and works in Bir(P2) (see [128]).

A lot of dynamical aspects of a birational map are controlled by its ac-
tion on the cohomology H2(X; R) of a \good" birational model X of P2(C).
The construction of such a model is not canonical; so Manin has introduced
the space of in�nite dimension of all cohomological classes of all birational
models ofP2(C). Its completion for the bilinear form induced by the cup
product de�nes a real Hilbert space Z (P2) endowed with an intersection
form. One of the two sheets of the hyperboloidf [D ] 2 Z (P2) j [D ]2 = 1g
owns a metric which yields a hyperbolic space (Gromov sense); let us de-
note it by HZ . We get a faithful representation of Bir(P2) into Isom( HZ ).
The classi�cation of isometries into three types has an algrebraic-geometric
meaning and induces a classi�cation of birational maps ([43]); it is strongly
related to the classi�cation of Diller and Favre ([73]) built on the degree
growth of the sequencef degf n gn 2 N. Such a sequence either is bounded
(elliptic maps), or grows linearly (de Jonqui�eres twists), or grows quadrati-
cally (Halphen twists), or grows exponentially (hyperbolic maps). Wegive
some applications of this construction: Bir(P2) satis�es the Tits alternative
([43]) and is not simple ([46]).

9



10 Julie D�eserti

One of the oldest results about the Cremona group is that any bi-
rational map of the complex projective plane is a product of quadratic
birational maps up to an automorphism of the complex projective plane.
It is thus natural to study the quadratic birational maps and also the cubic
ones in order to make in evidence some direct di�erences ([52]). In Chap-
ter 4 we present a strati�cation of the set of quadratic birational maps.
We recall that this set is smooth. We also give a geometric description of
the quadratic birational maps and a criterion of birationality for quadrat ic
rational maps. We then deal with cubic birational maps; the set of such
maps is not smooth anymore.

While N�ther was interested in the decomposition of the birational
maps, some people studied �nite subgroups of the Cremona group ([25,
122, 172]). A strongly related problem is the characterization of the bi-
rational maps that preserve curves of positive genus. In Chapter 5 we
give some statements and ideas of proof on this subject; people recently
went back to this domain [12, 15, 16, 29, 61, 79, 33, 150, 74], providing
new results about the number of conjugacy classes in Bir(P2) of birational
maps of ordern for example ([61, 27]). We also present another construc-
tion of birational involutions related to holomorphic foliations of degr ee 2
on P2(C) (see [50]).

A classical question in group theory is the following: let G be a group,
what is the automorphisms group Aut(G) of G ? For example, the auto-
morphisms of PGLn (C) are, for n � 3, obtained from the inner automor-
phisms, the involution u 7! tu� 1 and the automorphisms of the �eld C. A
similar result holds for the a�ne group of the complex line C; we give a
proof of it in Chapter 6. We also give an idea of the description of the
automorphisms group of Aut(C2), resp. Bir(P2) (see [66, 67]).

Margulis studies linear representations of the lattices of simple, real Lie
groups of real rank strictly greater than 1; Zimmer suggests to generalize
it to non-linear ones. In that spirit we expose the representations of the
classical lattices SLn (Z) into the Cremona group ([65]). We see, in Chap-
ter 7, that there is a description of embeddings of SL3(Z) into Bir( P2)
(up to conjugation such an embedding is the canonical embedding or the
involution u 7! tu� 1); therefore SLn (Z) cannot be embedded as soon as
n � 4.

The description of the centralizers of discrete dynamical systems is
an important problem in dynamic; it allows to measure algebraically the
chaos of such a system. In Chapter 8 we describe the centralizer of bi-
rational maps. Methods are di�erent for elliptic maps of in�nite order,
de Jonqui�eres twists, Halphen twists and hyperbolic maps. In the �rst
case, we can give explicit formulas ([32]); in particular the centralizer is
uncountable. In the second case, we do not always have explicit formulas
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([51])... When f is an Halphen twist, the situation is di�erent: the cen-
tralizer contains a subgroup of �nite index which is abelian, free and of
rank � 8 (see [43, 99]). Finally for a hyperbolic map f the centralizer is
an extension of a cyclic group by a �nite group ([43]).

The study of automorphisms of compact complex surfaces with positive
entropy is strongly related with birational maps of the complex projective
plane. Let f be an automorphism of a compact complex surface S with
positive entropy; then either f is birationally conjugate to a birational
map of the complex projective plane, or the Kodaira dimension of S is
zero and then f is conjugate to an automorphism of the unique minimal
model of S which has to be a torus, a K3 surface or an Enriques surface
([40]). The case of K3 surfaces has been studied in [41, 134, 146, 162, 171].
One of the �rst example given in the context of rational surfaces is due
to Coble ([57]). Let us mention another well-known example: let us con-
sider � = Z[i] and E = C=� : The group SL2(�) acts linearly on C2 and
preserves the lattice � � �; then any element A of SL2(�) induces an auto-
morphism f A on E � E which commutes with � (x; y) = (i x; iy): The auto-
morphism f A lifts to an automorphism ff A on the desingularization of the
quotient (E � E )=�; which is a Kummer surface. This surface is rational and
the entropy of ff A is positive as soon as one of the eigenvalues ofA has
modulus > 1.

We deal with surfaces obtained by blowing up the complex projective
plane in a �nite number of points. This is justi�ed by Nagata theorem ( see
[138, Theorem 5]): let S be a rational surface and letf be an automorphism
on S such that f � is of in�nite order; then there exists a sequence of holo-
morphic applications � j +1 : Sj +1 ! Sj such that S1 = P2(C); SN +1 = S
and � j +1 is the blow-up of pj 2 Sj : Such surfaces are calledbasic surfaces.
Nevertheless a surface obtained fromP2(C) by generic blow-ups has no
non trivial automorphism ([114, 123]).

Using Nagata and Harbourne works McMullen gives an analogous re-
sult of Torelli's Theorem for K3 surfaces ([135]): he constructs automor-
phisms on rational surfaces prescribing the action of the automorphisms
on the cohomological groups of the surface. These surfaces are rational
ones having, up to a multiplicative factor, a unique 2-form 
 such that

 is meromorphic and 
 does not vanish. If f is an automorphism on S
obtained via this construction, f � 
 is proportional to 
 and f preserves
the poles of 
. We also have the following property: when we project S on
the complex projective plane,f induces a birational map which preserves
a cubic (Chapter 10).

In [19, 20, 21] the authors consider birational maps ofP2(C) and adjust
the coe�cients in order to �nd, for any of these maps f , a �nite sequence
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of blow-ups � : Z ! P2(C) such that the induced map f Z = � � 1f � is
an automorphism of Z: Some of their works are inspired by [113, 112,
165, 166, 167]. More precisely Bedford and Kim produce examples which
preserve no curve and also non trivial continuous families (Chapter 11).
They prove dynamical properties such as coexistence of rotation domains
of rank 1 and 2 (Chapter 11).

In [69] the authors study a family of birational maps (� n )n � 2; they
construct, for any n, two points in�nitely near bP1 and bP2 having the
following property: � n induces an isomorphism betweenP2(C) blown
up in bP1 and P2(C) blown up in bP2: Then they give general conditions
on � n allowing them to give automorphisms ' of P2(C) such that ' � n

is an automorphism of P2(C) blown up in bP1; ' ( bP2); (' � n ) ' ( bP2); : : : ;
(' � n )k ' ( bP2) = bP1: This construction does not work only for � n , they
apply it to other maps (Chapter 12). They use the theory of deformations
of complex manifolds to describe explicitely the small deformations of ra-
tional surfaces; this allows them to give a simple criterion to determine the
number of parameters of the deformation of a given basic surface ([69]).
We end by a short scholium about the construction of automorphisms with
positive entropy on rational non-minimal surfaces obtained from birational
maps of the complex projective plane.
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Chapter 1

First steps

1.1 Divisors and intersection theory

Let X be an algebraic variety. A prime divisor on X is an irreducible
closed subset ofX of codimension 1.

Examples 1.1.1. � If X is a surface, the prime divisors ofX are the
irreducible curves that lie on it.

� If X = Pn (C) then prime divisors are given by the zero locus of
irreducible homogeneous polynomials.

A Weil divisor on X is a formal �nite sum of prime divisors with
integer coe�cients

mX

i =1

ai D i ; m 2 N; ai 2 Z; D i prime divisor of X:

Let us denote by Div(X ) the set of all Weil divisors on X .
If f 2 C(X ) � is a rational function and D a prime divisor we can de�ne

the multiplicity � f (D ) of f at D as follows:

� � f (D ) = k > 0 if f vanishes onD at the order k;

� � f (D ) = � k if f has a pole of orderk on D;

� and � f (D ) = 0 otherwise.

To any rational function f 2C(X ) � we associate a divisor div(f )2Div( X )
de�ned by

div( f ) =
X

D prime
divisor

� f (D ) D:

13



14 Julie D�eserti

Note that div( f ) 2 Div( X ) since � f (D ) is zero for all but �nitely
many D. Divisors obtained like that are called principal divisors . As
div( fg ) = div( f ) + div( g) the set of principal divisors is a subgroup
of Div( X ).

Two divisors D , D 0 on an algebraic variety are linearly equivalent
if D � D 0 is a principal divisor. The set of equivalence classes corresponds
to the quotient of Div( X ) by the subgroup of principal divisors; when X
is smooth this quotient is isomorphic to the Picard group Pic(X ). 1

Example 1.1.2. Let us see thatPic(Pn ) = ZH where H is the divisor of
an hyperplane.

Consider the homorphism of groups given by

� : Div( Pn ) ! Z; D of degreed 7! d:

Let us �rst remark that its kernel is the subgroup of principal divisors.
Let D =

P
ai D i be a divisor in the kernel, where eachD i is a prime

divisor given by an homogeneous polynomialf i 2 C[x0; : : : ; xn ] of some
degreedi . Since

P
ai di = 0 , f =

Q
f a i

i belongs toC(Pn ) � . We have
by construction D = div( f ) so D is a principal divisor. Conversely any
principal divisor is equal to div( f ) where f = g=h for some homogeneous
polynomials g, h of the same degree. Thus any principal divisor belongs to
the kernel.

Since Pic(Pn ) is the quotient of Div( Pn ) by the subgroup of princi-
pal divisors, we get, by restricting � to the quotient, an isomorphism
Pic(Pn ) ! Z. We conclude by noting that an hyperplane is sent on1.

We can de�ne the notion of intersection.

Proposition 1.1.3 ([109]). Let S be a smooth projective surface. There
exists a unique bilinear symmetric form

Div(S) � Div(S) ! Z; (C; D) 7! C � D

having the following properties:

� if C and D are smooth curves meeting transversally thenC � D =
#( C \ D);

� if C and C0 are linearly equivalent thenC � D = C0 � D .

In particular this yields an intersection form

Pic(S) � Pic(S) ! Z; (C; D) 7! C � D:

1The Picard group of X is the group of isomorphism classes of line bundles on X .
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Given a point p in a smooth algebraic variety X of dimensionn we say
that � : Y ! X is a blow-up of p 2 X if Y is a smooth variety, if

� jY nf � � 1 (p)g : Y n f � � 1(p)g ! X n f pg

is an isomorphism and if � � 1(p) ' Pn � 1(C). Set E = � � 1(p); E is called
the exceptional divisor .

If � : Y ! X and � 0: Y 0 ! X are two blow-ups of the same pointp
then there exists an isomorphism' : Y ! Y 0 such that � = � 0' . So we
can speak aboutthe blow-up of p 2 X .

Remark 1.1.4. When n = 1 , � is an isomorphism but whenn � 2 it is
not: it contracts E = � � 1(p) ' Pn � 1(C) onto the point p.

Example 1.1.5. We now describe the blow-up of(0 : 0 : 1) in P2(C). Let
us work in the a�ne chart z = 1 , i.e. in C2 with coordinates (x; y). Set

Bl (0 ;0) P
2 =

n�
(x; y); (u : v)

�
2 C2 � P1

�
� xv = yu

o
:

The morphism � : Bl (0 ;0) P2 ! C2 given by the �rst projection is the blow-
up of (0; 0):

� First we can note that � � 1(0; 0) =
n�

(0; 0); (u : v)
� �

� (u : v) 2 P1
o

so

E = � � 1(0; 0) is isomorphic to P1;

� Let q = ( x; y) be a point of C2 n f (0; 0)g. We have

� � 1(q) =
n�

(x; y); (x : y)
� o

2 Bl (0 ;0) P
2 n E

so � jBl (0 ; 0) P2 nE is an isomorphism, the inverse being

(x; y) 7!
�
(x; y); (x : y)

�
:

How to compute ? In a�ne charts: let U (resp. V ) be the open subset
of Bl (0 ;0) P2 where v 6= 0 ( resp. u 6= 0) . The open subsetU is isomorphic
to C2 via the map

C2 ! U; (y; u) 7!
�
(yu; y); (u : 1)

�
;

we can see thatV is also isomorphic to C2. In local coordinates we can
de�ne the blow-up by

C2 ! C2; (y; u) 7! (yu; y); E is described byf y = 0g

C2 ! C2; (x; v) 7! (x; xv ); E is described byf x = 0g
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Let � : BlpS ! S be the blow-up of the pointp 2 S. The morphism� in-
duces a map� � from Pic(S) to Pic(Bl pS) which sends a curveC on � � 1(C).
If C � S is irreducible, thestrict transform eC of C is eC = � � 1(C n f pg).

We now recall the de�nition of multiplicity of a curve at a point .
If C � S is a curve andp is a point of S, we can de�ne the multiplicity
mp(C) of C at p. Let m be the maximal ideal of the ring of functions
Op;S

2. Let f be a local equation ofC; then mp(C) can be de�ned as the
integer k such that f 2 mk nmk+1 . For example if S is rational, we can �nd
a neighborhoodU of p in S with U � C2, we can assume thatp = (0 ; 0)
in this a�ne neighborhood, and C is described by the equation

nX

i =1

Pi (x; y)=0 ; Pi homogeneous polynomials of degreei in two variables:

The multiplicity mp(C) is equal to the lowest i such that Pi is not equal
to 0. We have

� mp(C) � 0;

� mp(C) = 0 if and only if p 62C;

� mp(C) = 1 if and only if p is a smooth point of C.

Assume that C and D are distinct curves with no common component
then we de�ne an integer (C �D)p which counts the intersection ofC and D
at p:

� it is equal to 0 if either C or D does not pass throughp;

� otherwise let f , resp. g be some local equation ofC, resp. D in
a neighborhood of p and de�ne (C � D)p to be the dimension of
Op;S=(f; g ).

This number is related to C � D by the following statement.

Proposition 1.1.6 ([109], Chapter V, Proposition 1.4). If C and D are
distinct curves without any common irreducible component on a smooth
surface, we have

C � D =
X

p2 C \ D

(C � D )p;

in particular C � D � 0.

2Let us recall that if X is a quasi-projective variety and if x is a point of X , then
Op;X is the set of equivalence classes of pairs (U; f ) where U � X is an open subset
x 2 U and f 2 C[U].



Chapter 1. First steps 17

Let C be a curve in S,p = (0 ; 0) 2 S. Let us take local coordinatesx,
y at p and let us setk = mp(C); the curve C is thus given by

Pk (x; y) + Pk+1 (x; y) + : : : + Pr (x; y) = 0 ;

wherePi denotes a homogeneous polynomial of degreei . The blow-up of p
can be viewed as (u; v) 7! (uv; v); the pull-back of C is given by

vk �
pk (u; 1) + vpk+1 (u; 1) + : : : + vr � k pr (x; y)

�
= 0 ;

i.e. it decomposes intok times the exceptional divisor E = � � 1(0; 0) =
(v = 0) and the strict transform. So we have the following statement:

Lemma 1.1.7. Let � : BlpS ! S be the blow-up of a pointp 2 S. We have
in Pic(Bl pS)

� � (C) = eC + mp(C)E

where eC is the strict transform of C and E = � � 1(p).

We also have the following statement.

Proposition 1.1.8 ([109], Chapter V, Proposition 3.2). Let S be a smooth
surface, let p be a point of S and let � : BlpS ! S be the blow-up ofp. We
denote byE � BlpS the curve � � 1(p) ' P1. We have

Pic(Bl pS) = � � Pic(S) + ZE:

The intersection form on BlpS is induced by the intersection form onS via
the following formulas

� � � C � � � D = C � D for any C; D 2 Pic(S);

� � � C � E = 0 for any C 2 Pic(S);

� E 2 = E � E = � 1;

� eC2 = C2 � 1 for any smooth curveC passing throughp and where eC
is the strict transform of C.

If X is an algebraic variety, the nef cone Nef(X ) is the cone of divi-
sorsD such that D � C � 0 for any curve C in X .

1.2 Birational maps

A rational map from P2(C) into itself is a map of the following type

f : P2(C) 99KP2(C); (x : y : z) 99K(f 0(x; y; z) : f 1(x; y; z) : f 2(x; y; z))
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where the f i 's are homogeneous polynomials of the same degree without
common factor.

A birational map from P2(C) into itself is a rational map

f : P2(C) 99KP2(C)

such that there exists a rational map  from P2(C) into itself satisfying
f �  =  � f = id :

The Cremona group Bir( P2) is the group of birational maps from
P2(C) into itself. The elements of the Cremona group are also called
Cremona transformations . An element f of Bir( P2) is equivalently
given by (x; y) 7! (f 1(x; y); f 2(x; y)) where C(f 1; f 2) = C(x1; x2), i.e.

Bir( P2) ' Aut C(C(x; y)) :

The degree of f : (x : y : x) 99K(f 0(x; y; z) : f 1(x; y; z) : f 2(x; y; z)) 2
Bir( P2) is equal to the degree of thef i 's: degf = deg f i :

Examples 1.2.1. � Every automorphism

f : (x : y : z) 99K(a0x+ a1y+ a2z : a3x+ a4y+ a5z : a6x+ a7y+ a8z);

det(ai ) 6= 0

of the complex projective plane is a birational map. The degree of f
is equal to1: In other words Aut( P2) = PGL 3(C) � Bir( P2):

� The map � : (x : y : z) 99K(yz : xz : xy) is rational; we can verify
that � � � = id ; i.e. � is an involution so � is birational. We have:
deg� = 2 :

De�nitions 1.2.2. Let f : (x:y:z)99K(f 0(x; y; z) : f 1(x; y; z) : f 2(x; y; z))
be a birational map ofP2(C); then:

� the indeterminacy locus of f , denoted byInd f , is the set
n

m 2 P2(C)
�
� f 0(m) = f 1(m) = f 2(m) = 0

o

� and the exceptional locus Exc f of f is given by
n

m 2 P2(C)
�
� det jac(f )(m ) = 0

o
:

Examples 1.2.3. � For any f in PGL3(C)=Aut( P2) we haveInd f =
Exc f = ; :
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� Let us denote by� the map de�ned by� : (x : y : z) 99K(yz : xz : xy);
we note that

Exc � =
�

x = 0 ; y = 0 ; z = 0
	

;

Ind � =
�

(1 : 0 : 0); (0 : 1 : 0); (0 : 0 : 1)
	

:

� If � is the following map� : (x : y : z) 99K(xy : z2 : yz); then

Exc � =
�

y = 0 ; z = 0
	

& Ind � =
�

(1 : 0 : 0); (0 : 1 : 0)
	

:

De�nition 1.2.4. Let us recall that if X is an irreducible variety and Y
a variety, a rational map f : X 99KY is a morphism from a non-empty
open subsetU of X to Y .

Let f : P2(C) 99KP2(C) be the birational map given by

(x : y : z) 99K(f 0(x; y; z) : f 1(x : y : z) : f 2(x; y; z))

where the f i 's are homogeneous polynomials of the same degree� , and
without common factor. The linear system � f of f is the pre-image
of the linear system of lines ofP2(C); it is the system of curves given
by

P
ai f i = 0 for ( a0 : a1 : a2) in P2(C). Let us remark that if A is

an automorphism of P2(C), then � f = � Af . The degree of the curves
of � f is � , i.e. it coincides with the degree of f . If f has one point of
indeterminacy p1, let us denote by � 1 : Blp1 P2 ! P2(C) the blow-up of
p1 and E1 the exceptional divisor. The map ' 1 = f � � 1 is a birational
map from Blp1 P2 into P2(C). If ' 1 is not de�ned at one point p2 then we
blow it up via � 2 : Blp1 ;p2 P2 ! P2(C); set E2 = � � 1

2 (p2). Again the map
' 2 = ' 1 � � 1 : Blp1 ;p2 P2 99KP2(C) is a birational map. We continue the
same processus until' r becomes a morphism. Thepi 's are called base-
points of f or base-points of � f . Let us describe Pic(Blp1 ;:::;p r P2). First
Pic(P2) = ZL where L is the divisor of a line (Example 1.1.2). SetE i =
(� i +1 : : : � r ) � Ei and ` = ( � 1 : : : � r ) � (L ). Applying r times Proposition 1.1.8
we get

Pic(Bl p1 ;:::;p r P2) = Z` � ZE1 � : : : � ZE r :

Moreover all elements of the basis (̀; E 1; : : : ; Er ) satisfy the following re-
lations

`2 = ` � ` = 1 ; E 2
i = � 1;

E i � E j = 0 8 1 � i 6= j � r; E i � ` = 0 81 � i � r:

The linear system � f consists of curves of degree� all passing through
the pi 's with multiplicity mi . Set E i = ( � i +1 : : : � r ) � Ei . Applying r times
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Lemma 1.1.7 the elements of �' r are equivalent to �L �
P r

i =1 mi E i whereL
is a generic line. Remark that these curves have self-intersection

� 2 �
rX

i =1

m2
i :

All members of a linear system are linearly equivalent and the dimension
of � ' r is 2 so the self-intersection has to be non-negative. This implies
that the number r exists, i.e. the number of base-points off is �nite.
Let us note that by construction the map ' r is a birational morphism
from Bl p1 ;:::;p r P2 to P2(C) which is the blow-up of the points of f � 1; we
have the following diagram

S0

� r � ::: � � 1

����
��

��
�� ' r

��>>
>>

>>
>>

S
f

//_______ eS

The linear system � f of f corresponds to the strict pull-back of the system
OP2 (1) of lines of P2(C) by ' . The system � ' r which is its image on
Blp1 ;:::;p r P2 is the strict pull-back of the system OP2 (1). Let us consider
a general lineL of P2(C) which does not pass through thepi 's; its pull-
back ' � 1

r (L ) corresponds to a smooth curve on Blp1 ;:::;p r P2 which has
self-intersection � 1 and genus 0. We thus have (' � 1

r (L ))2 = 1 and by
adjunction formula

' � 1
r (L ) � KBl p 1 ;:::;p r P2 = � 3:

Since the elements of �' r are equivalent to

�L �
rX

i =1

mi E i

and since KBl p 1 ;:::;p r P2 = � 3L +
P r

i =1 E i we have

rX

i =1

mi = 3( � � 1);
rX

i =1

m2
i = � 2 � 1:

In particular if � = 1 the map f has no base-points. If� = 2 then r = 3
and m1 = m2 = m3 = 1. As we will see later (Chapter 4) it doesn't mean
that \there is one quadratic birational map".

So there are three standard ways to describe a Cremona map

� the explicit formula ( x : y : z) 99K(f 0(x; y; z) : f 1(x; y; z) : f 2(x; yz))
where the f i 's are homogeneous polynomials of the same degree and
without common factor;
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� the data of the degree of the map, the base-points of the map and
their multiplicity (it de�nes a map up to an automorphism);

� the base-points of� and the curves contracted by� with the nota-
tions of Theorem 1.3.1 (it de�nes a map up to an automorphism).

1.3 Zariski's theorem

Let us recall the following statement.

Theorem 1.3.1 (Zariski, 1944). Let S, eS be two smooth projective surfaces
and let f : S 99K eS be a birational map. There exists a smooth projective
surface S0 and two sequences of blow-ups� 1 : S0 ! S, � 2 : S0 ! eS such that
f = � 2� � 1

1

S0

� 1

����
��

��
�� � 2

��>>
>>

>>
>>

S
f

//_______ eS

Example 1.3.2. The involution

� : P2(C) 99KP2(C); (x : y : z) 99K(yz : xz : xy)

is the composition of two sequences of blow-ups with

A = (1 : 0 : 0) ; B = (0 : 1 : 0) ; C = (0 : 0 : 1) ;

L AB (resp. L AC ; resp. L BC ) the line passing throughA and B (resp. A
and C; resp. B and C) EA (resp. EB ; resp. EC ) the exceptional divisor
obtained by blowing upA (resp. B; resp. C) and eL AB (resp. eL AC ; resp.
eL BC ) the strict transform of L AB (resp. L AC ; resp. L BC ).
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2

C

BA

ACL
BCL

ABL

BE

ABL
~

BCL
~

ACL
~

AE

CEACL
~

BCL
~

AE
BE

ABL
~

1

P
2

C(   ) P
2

C(   )

There are two steps in the proof of Theorem 1.3.1. The �rst one is to
composef with a sequence of blow-ups in order to remove all the points of
indeterminacy (remark that this step is also possible with a rational map
and can be adapted in higher dimension); we thus have

S0

� 1

����
��

��
�� ef

��>>
>>

>>
>>

S
f

//_______ eS

The second step is speci�c to the case of birational map between two
surfaces and can be stated as follows.

Proposition 1.3.3 ([128]). Let f : S ! S0 be a birational morphism be-
tween two surfacesS and S0: Assume that f � 1 is not de�ned at a point
p of S0; then f can be written �� where � : BlpS0 ! S0 is the blow-up of
p 2 S0 and � a birational morphism from S to BlpS0

BlpS0

�

!!DD
DD

DD
DD

S

�
=={{{{{{{{

f
//S0

Before giving the proof of this result let us give a useful Lemma.

Lemma 1.3.4 ([13]). Let f : S 99K S0 be a birational map between two
surfacesS and S0. If there exists a point p 2 S such that f is not de�ned
at p there exists a curveC on S0 such that f � 1(C) = p:

Proof of the Proposition 1.3.3. Assume that � = � � 1f is not a morphism.
Let m be a point of S such that � is not de�ned at m. On the one hand



Chapter 1. First steps 23

f (m) = p and f is not locally invertible at m, on the other hand there
exists a curve in BlpS0 contracted on m by � � 1 (Lemma 1.3.4). This curve
is necessarily the exceptional divisorE obtained by blowing up.

Let q1, q2 be two di�erent points of E at which � � 1 is well de�ned and
let C1, C2 be two germs of smooth curves transverse toE . Then � (C1)
and � (C2) are two germs of smooth curve transverse atp which are the
image by f of two germs of curves atm. The di�erential of f at m is thus
of rank 2: contradiction with the fact that f is not locally invertible at m.

� � 1(C2)

f

��

q2

E

C1 C2

� (C2)

m� � 1(C1)

p = f (m)

� (C1)

q1

S S0

eS

We say that f : S 99KP2(C) is induced by a polynomial automor-
phism 3 of C2 if

� S = C2 [ D where D is a union of irreducible curves,D is called
divisor at in�nity ;

� P2(C) = C2 [ L where L is a line, L is called line at in�nity ;

� f induces an isomorphism between Sn D and P2(C) n L:

If f : S 99KP2(C) is induced by a polynomial automorphism of C2 it
satis�es some properties:

3A polynomial automorphism of C2 is a bijective application of the following type

f : C2 ! C2 ; (x; y ) 7! (f 1 (x; y ); f 2 (x; y )) ; f i 2 C[x; y ]:
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Lemma 1.3.5. Let S be a surface. Let f be a birational map from S
to P2(C) induced by a polynomial automorphism ofC2. Assume that f is
not a morphism. Then

� f has a unique point of indeterminacyp1 on the divisor at in�nity;

� f has base-pointsp2, : : :, ps and for all i = 2 ; : : : ; s the point pi is
on the exceptional divisor obtained by blowing uppi � 1;

� each irreducible curve contained in the divisor at in�nity i s contracted
on a point by f ;

� the �rst curve contracted by � 2 is the strict transform of a curve
contained in the divisor at in�nity;

� in particular if S = P2(C) the �rst curve contracted by � 2 is the
transform of the line at in�nity (in the domain).

Proof. According to Lemma 1.3.4 ifp is a point of indeterminacy of f there
exists a curve contracted byf � 1 on p. As f is induced by an automorphism
of C2 the unique curve on P2(C) which can be blown down is the line
at in�nity so f has at most one point of indeterminacy. As f is not a
morphism, it has exactly one.

The second assertion is obtained by induction.
Each irreducible curve contained in the divisor at in�nity is either con-

tracted on a point, or sent on the line at in�nity in P2(C). Since f � 1

contracts the line at in�nity on a point the second eventuality is excluded.
According to Theorem 1.3.1 we have

S0

� 1

����
��

��
�� � 2

""DD
DD

DD
DD

S
f

//_______ P2(C)

where S0 is a smooth projective surface and� 1 : S0 ! S, � 2 : S0 ! P2(C)
are two sequences of blow-ups. The divisor at in�nity in S0 is the union of

� a divisor of self-intersection� 1 obtained by blowing-up ps,

� the other divisors, all of self-intersection � � 2, produced in the se-
quence of blow-ups,

� and the strict transform of the divisor at in�nity in S 0.

The �rst curve contracted by � 2 is of self-intersection� 1 and cannot be the
last curve produced by� 1 (otherwise ps is not a point of indeterminacy); so
the �rst curve contracted by � 2 is the strict transform of a curve contained
in the divisor at in�nity.

The last assertion follows from the previous one.
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Some subgroups of the
Cremona group

2.1 A special subgroup: the group of poly-
nomial automorphisms of the plane

A polynomial automorphism of C2 is a bijective application of the
following type

f : C2 ! C2; (x; y) 7! (f 1(x; y); f 2(x; y)) ; f i 2 C[x; y]:

The degree of f = ( f 1; f 2) is de�ned by deg f = max(deg f 1; degf 2): Note
that deg  f  � 1 6= deg f in general so we de�ne the �rst dynamical
degree of f

d(f ) = lim(deg f n )1=n

which is invariant under conjugacy1. The set of the polynomial automor-
phisms is a group denoted by Aut(C2):

Examples 2.1.1. � The map

C2 ! C2; (x; y) 7! (a1x + b1y + c1; a2x + b2y + c2);

ai ; bi ; ci 2 C; a1b2 � a2b1 6= 0

is an automorphism of C2: The set of all these maps is thea�ne
group A:

1The limit exists since the sequence f degf n gn 2 N is submultiplicative

25
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� The map

C2 ! C2; (x; y) 7! (�x + P(y); �y + 
 );

�; �; 
 2 C; �� 6= 0 ; P 2 C[y]

is an automorphism of C2: The set of all these maps is a group, the
elementary group E:

� Of course

S= A\ E=
�

(a1x + b1y + c1; b2y + c2)
�
� ai ; bi ; ci 2 C; a1b2 6= 0

	

is a subgroup ofAut( C2):

The group Aut( C2) has a very special structure.

Theorem 2.1.2 (Jung's Theorem [121]). The group Aut( C2) is the amal-
gamated product ofA and E along S :

Aut( C2) = A� S E:

In other words Aand EgenerateAut( C2) and each elementf in Aut( C2)nS
can be written as follows

f = ( a1)e1 : : : an (en ); ei 2 En A; ai 2 An E:

Moreover this decomposition is unique modulo the followingrelations

ai ei = ( ai s)(s� 1ei ); ei � 1ai = ( ei � 1s0)(s0� 1ai ); s; s0 2 S:

Remark 2.1.3. The Cremona group is not an amalgam([59]). Neverthe-
less we know generators forBir( P2) :

Theorem 2.1.4 ([143, 144, 145, 49]). The Cremona group is generated

by Aut( P2) = PGL 3(C) and the involution
�

1
x ; 1

y

�
.

There are many proofs of Theorem 2.1.2; you can �nd a \historical
review" in [128]. We will now give an idea of the proof done in [128] and
give details in x2.2. Let

ef : (x; y) 7! ( ef 1(x; y); ef 2(x; y))

be a polynomial automorphism of C2 of degree�: We can view ef as a
birational map:

f : P2(C) 99KP2(C); (x : y : z) 99K
�

z� ef 1

� x
z

;
y
z

�
: z� ef 2

� x
z

;
y
z

�
: z�

�
:
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Lamy proved there exists ' 2 Bir( P2) induced by a polynomial automor-
phism of C2 such that # Ind f ' � 1 < # Ind f ; more precisely \' comes
from an elementary automorphism". Proceeding recursively we obtain a
map g such that #Ind f = 0, in other words an automorphism of P2(C)
which gives an a�ne automorphism.

According to Bass-Serre theory ([159]) we can canonically associate a
tree to any amalgamated product. LetT be the tree associated to Aut(C2):

� the disjoint union of Aut( C2)=E and Aut( C2)=A is the set of vertices,

� Aut( C2)=S is the set of edges.

All these quotients must be understood as being left cosets; the cosets
of f 2 Aut( C2) are noted respectively f E; f A; and f S: By de�nition the
edgehS links the vertices f A and gE if hS � f A and hS � gE (and so f A=
hA and gE= hE). In this way we obtain a graph; the fact that A and E are
amalgamated alongS is equivalent to the fact that T is a tree ([159]). This
tree is uniquely characterized (up to isomorphism) by the following pro-
perty: there exists an action of Aut(C2) on T ; such that the fundamental
domain of this action is a segment,i.e. an edge and two vertices, withE
and Aequal to the stabilizers of the vertices of this segment (and soSis the
stabilizer of the entire segment). This action is simply the left translation:
g(hS) = ( g � h)S:

eaE aeA

eeaE

eeaE

eeA

idE

eA

idA

eaE

eeeaE eaeeA

eaeA

aeeA

aE

From a dynamical point of view a�ne automorphisms and elemen-
tary automorphisms are simple. Nevertheless there exist some elements in
Aut( C2) with a rich dynamic; this is the case of H�enon automorphisms ,
automorphisms of the type 'g 1 : : : gp ' � 1 with

' 2 Aut( C2); gi = ( y; Pi (y) � � i x); Pi 2 C[y]; degPi � 2; � i 2 C� :

Note that gi =

2 AnE
z }| {
(y; x)

2 EnA
z }| {
(� � i x + Pi (y); y) :
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Using Jung's theorem, Friedland and Milnor proved the following state-
ment.

Proposition 2.1.5 ([92]). Let f be an element ofAut( C2):
Either f is conjugate to an element ofE; or f is a H�enon automor-

phism.

If f belongs toE; then d(f ) = 1 : If f = g1 : : : gp with gi = ( y; Pi (y) �

� i x); then d(f ) =
pY

i =1

deggi � 2: Then we have

� d(f ) = 1 if and only if f is conjugate to an element ofE;

� d(f ) > 1 if and only if f is a H�enon automorphism.

H�enon automorphisms and elementary automorphisms are very
di�erent:

� H�enon automorphisms:

no invariant rational �bration ([36]),

countable centralizer ([127]),

in�nite number of hyperbolic periodic points;

� Elementary automorphisms:

invariant rational �bration,

uncountable centralizer.

2.2 Proof of Jung's theorem

Assume that � is a polynomial automorphism of C2 of degreen

� : ( x; y) 7! (� 1(x; y); � 2(x; y)) ; � i 2 C[x; y];

we can extend � to a birational map still denoted by �

� : ( x : y : z) 99K
�

zn � 1

� x
z

;
y
z

�
: zn � 2

� x
z

;
y
z

�
: zn

�
:

The line at in�nity in P2(C) is z = 0. The map � : P2(C) 99KP2(C) has a
unique point of indeterminacy which is on the line at in�nity (Lemma 1.3.5).
We can assume, up to conjugation by an a�ne automorphism, that this
point is (1 : 0 : 0) (of course this conjugacy doesn't change the number of
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base-points of �). We will show that there exists ' : P2(C) 99KP2(C) a
birational map induced by a polynomial automorphism of C2 such that

P2(C)
� � ' � 1

##HHHHH

P2(C)

'
;;vvvvv

�
//________ P2(C)

and # base-points of � ' � 1 < # base-points of �. To do this we will re-
arrange the blow-ups of the sequences� 1 and � 2 appearing when we apply
Zariski's Theorem: the map ' is constructed by realising some blow-ups
of � 1 and some blow-ups of� 2.

2.2.1 Hirzebruch surfaces

Let us consider the surfaceF1 obtained by blowing-up (1 : 0 : 0) 2 P2(C).
This surface is a compacti�cation of C2 which has a natural rational �-
bration corresponding to the linesy = constant. The divisor at in�nity is
the union of two rational curves (i.e. curves isomorphic toP1(C)) which
intersect in one point. One of them is the strict transform of the line at
in�nity in P2(C), it is a �ber denoted by f 1; the other one, denoted by
s1 is the exceptional divisor which is a section for the �bration. We have:
f 2

1 = 0 and s2
1 = � 1 (Proposition 1.1.8). More generally for anyn we

denote by Fn a compacti�cation of C2 with a rational �bration and such
that the divisor at in�nity is the union of two transversal rational curves:
a �ber f 1 and a section s1 of self-intersection � n. These surfaces are
called Hirzebruch surfaces :

PP1 (C)
�
OP1 (C) � O P1 (C) (n)

�
:

Let us consider the surfaceFn . Let p be the intersection of sn and f n ,
where f n is a �ber. Let � 1 be the blow-up of p 2 Fn and let � 2 be the
contraction of the strict transform ff n of f n . We can go fromFn to Fn +1

via � 2� � 1
1 :

0
fn p

sn

-n

Fn

-1
-1fn

~

sn
~

- n+( 1)
- n+( 1)

0

Fn+1

n+1
s

1 2
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We can also go fromFn +1 to Fn via � 2� � 1
1 where

� � 1 is the blow-up of a point p 2 Fn +1 which belongs to the �ber f n

and not to the section sn +1 ,

� � 2 the contraction of the strict transform ff n of f n :

sn]sn +1

� (n + 1)

0� 1

� 1

� (n + 1)

sn +1

p

0

� n

Fn +1 Fn

� 2f n � 1 ff n

2.2.2 First step: blow-up of (1 : 0 : 0)

The point (1 : 0 : 0) is the �rst blown-up point in the sequence � 1. Let us
denote by ' 1 the blow-up of (1 : 0 : 0) 2 P2(C), we have

F1

' 1

||y
y

y
y

g1

""E
E

E
E

P2(C)
�

//_______ P2(C)

Note that # base-points of g1 = # base-points of � � 1. Let us come back
to the diagram given by Zariski's theorem. The �rst curve contracted by � 2

which is a curve of self-intersection� 1 is the strict transform of the line at
in�nity (Lemma 1.3.5, last assertion); it corresponds to the �ber f 1 in F1.
But in F1 we have f 2

1 = 0; the self-intersection of this curve has thus to
decrease so the point of indeterminacyp of g1 has to belong to f 1. But p
also belongs to the curve produced by the blow-up (Lemma 1.3.5, second
assertion); in other wordsp = f 1 \ s1.

2.2.3 Second step: Upward induction

Lemma 2.2.1. Let n � 1 and let h : Fn 99KP2(C) be a birational map
induced by a polynomial automorphism ofC2. Suppose thath has only one
point of indeterminacy p such thatp = f n \ sn . Let ' : Fn 99KFn +1 be the
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birational map which is the blow-up ofp composed with the contraction of
the strict transform of f n . Let us consider the birational maph0 = h � ' � 1:

Fn +1

h0

##GGGGG

Fn

'
==z

z
z

z

h
//________ P2(C)

Then

� # base-points ofh0 = # base-points ofh � 1;

� the point of indeterminacy of h0 belongs tof n +1 .

Proof. Let us apply Zariski Theorem to h; we obtain

S
� 1

••••
••

••
•• � 2

!!DD
DD

DD
DD

Fn h
//______ P2(C)

where S is a smooth projective surface and� 1, � 2 are two sequences of
blow-ups.

Since fsn
2 � � 2 (where fsn is the strict transform of sn ) the �rst curve

contracted by � 2 is the transform of f n (Lemma 1.3.5). So the transform of
f n in S is of self-intersection� 1; we also havef 2

n = 0 in Fn . This implies
that after the blow-up of p the points appearing in � 1 are not on f n .
Instead of realising these blow-ups and then contracting the transform of
f n we �rst contract and then realise the blow-ups. In other words we have
the following diagram

S

~~||
| |

| |
| |

|

�
""EE

EE
EE

EE
E

�

  @@
@@

@@
@@

@
�

��� �
� �

� �
� �

S0

""DD
DD

DD
DD

}}{{
{{

{{
{{

Fn

h

44T U WY Z \ ] _ a b d e g i
Fn +1

h0
//_______ P2(C)

where � is the blow-up of p and � the contraction of f n . The map �� � 1

is exactly the �rst link mentioned in x2.2.1. We can see that to blow-
up p allows us to decrease the number of points of indeterminacy and to
contract f n does not create some point of indeterminacy. So

# base-points of h0 = # base-points of h � 1
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Moreover the point of indeterminacy of h0 is on the curve obtained by the
blow-up of p, i.e. f n .

After the �rst step we are under the assumptions of the Lemma 2.2.1
with n = 1. The Lemma gives an application h0: F2 99KP2(C) such that
the point of indeterminacy is on f 2. If this point also belongs to s2 we can
apply the Lemma again. Repeating this as long as the assumptions of the
Lemma 2.2.1 are satis�ed, we obtain the following diagram

Fn

g2

""E
E

E
E

F1

' 2

>>~
~

~
~

g1
//_______ P2(C)

where ' 2 is obtained by applying n � 1 times Lemma 2.2.1. Moreover

# base-points of g2 = # base-points of g1 � n + 1

and the point of indeterminacy of g2 is on f n but not on sn (remark: as,
for n � 2, there is no morphism fromFn to P2(C), the map g2 has a point
of indeterminacy).

2.2.4 Third step: Downward induction

Lemma 2.2.2. Let n � 2 and let h : Fn 99KP2(C) be a birational map
induced by a polynomial automorphism ofC2. Assume that h has only
one point of indeterminacy p, and that p belongs to f n but not to sn .
Let ' : Fn 99KFn � 1 be the birational map which is the blow-up ofp com-
posed with the contraction of the strict transform of f n . Let us consider
the birational map h0 = h � ' � 1:

Fn � 1

h0

##GGGGG

Fn

'
==z

z
z

z

h
//________ P2(C)

Then

� # base-points ofh0 = # base-points ofh � 1;

� if h0 has a point of indeterminacy, it belongs tof n � 1 and not to sn � 1.
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Proof. Let us consider the Zariski decomposition ofh

S
� 1

••••
••

••
•• � 2

!!DD
DD

DD
DD

Fn h
//______ P2(C)

Since fsn
2 = � n with n � 2, the �rst curve blown down by � 2 is the

transform of f n (Lemma 1.3.5). Like in the proof of Lemma 2.2.1 we
obtain the following commutative diagram

S

~~||
| |

| |
| |

|

�
""EE

EE
EE

EE
E

�

  @@
@@

@@
@@

@
�

��� �
� �

� �
� �

S0

""DD
DD

DD
DD

}}{{
{{

{{
{{

Fn

h

44T U WY Z \ ] _ a b d e g i
Fn � 1

h0
//_______ P2(C)

where � is the blow-up of p and � the contraction of f n . We immediately
have:

# base-points of h0 = # base-points of h � 1:

Let F 0 be the exceptional divisor associated to� ; the map h has a base-
point on F 0. Assume that this point is F 0 \ ff n , then (� � 1

1 (f n ))2 � � 2:
contradiction with the fact that it is the �rst curve blown down by � 2. So
the base-point of h is not F 0 \ ff n and so it is the point of indeterminacy
of h0 that is on f n � 1 but not on sn � 1.

After the second step the assumptions in Lemma 2.2.2 are satis�ed. Let
us remark that if n � 3 then the map h0 given by Lemma 2.2.2 still satis�es
the assumptions in this Lemma. After applying n � 1 times Lemma 2.2.2
we have the following diagram

F1

g3

""E
E

E
E

Fn

' 3

>>~
~

~
~

g2
//_______ P2(C)
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2.2.5 Last contraction

Applying Zariski's theorem to g3 we obtain

S
'

••��
��

��
�� � 2

!!DD
DD

DD
DD

F1 g3
//______ P2(C)

The fourth assertion of the Lemma 1.3.5 implies that the �rst curve con-
tracted by � 2 is either the strict transform of f 1 by � 1, or the strict trans-
form of s1 by � 1. Assume that we are in the �rst case; then after realising
the sequence of blow-ups� 1 and contracting this curve the transform of
s1 is of self-intersection 0 and so cannot be contracted: contradiction with
the third assertion of Lemma 1.3.5. So the �rst curve contracted is the
strict transform of s1 which can be done and we obtain

P2(C)
g4

##HHHHH

F1

' 4

==zzzzzzzz
g3

//________ P2(C)

The morphism ' 4 is the blow-up of a point and the exceptional divisor
associated to its blow-up iss1; up to an automorphism we can assume
that s1 is contracted on (1 : 0 : 0). Moreover

# base-points of g3 = # base-points of g4:

2.2.6 Conclusion
After all these steps we have

P2(C)
g4

##HHHHH

P2(C)

' 4 � ' 3 � ' 2 � ' 1

;;vvvvv

�
//________ P2(C)

where # base-points of g4 = # base-points of � � 2n + 1 (with n � 2).
Let us check that ' = ' 4 � ' 3 � ' 2 � ' 1 is induced by an element of

E. It is su�cient to prove that ' preserves the �bration y = constant, i.e.
the pencil of curves through (1 : 0 : 0); indeed

� the blow-up ' 1 sends lines through (1 : 0 : 0) on the �bers ofF1;

� ' 2 and ' 3 preserve the �brations associated toF1 and Fn ;

� the morphism ' 4 sends �bers ofF1 on lines through (1 : 0 : 0).
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Finally g4 is obtained by composing � with a birational map induced by
an a�ne automorphism and a birational map induced by an element of E
so g4 is induced by a polynomial automorphism; morevoer

# base-points of g4 < # base-points of � :

2.2.7 Example
Let us consider the polynomial automorphism � of C2 given by

� =
�
y + ( y + x2)2 + ( y + x2)3; y + x2�

:

Let us now apply to � the method just explained above. The point of
indeterminacy of � is (0 : 1 : 0). Let us compose � with ( y; x) to deal with
an automorphism whose point of indeterminacy is (1 : 0 : 0). Let us blow
up this point

F1

||zz
zz

zz
zz

P2 (C)

Then we apply Lemma 2.2.1

~~~~
~~

~~
~

  @@
@@

@@
@

F1

||zz
zz

zz
zz

F2

P2 (C)

On F2 the point of indeterminacy is on the �ber, we thus apply
Lemma 2.2.2

~~~~
~~

~~
~

  @@
@@

@@
@

~~~~
~~

~~
~

  @@
@@

@@
@

F1

||zz
zz

zz
zz

F2 F1

P2 (C)

and contracts s1

~~~~
~~

~~
~

  @@
@@

@@
@

~~~~
~~

~~
~

  @@
@@

@@
@

F1

||zz
zz

zz
zz

F2 F1

""DD
DD

DD
DD

P2 (C)
( x + y 2 ;y )( y;x )

//____________________ P2 (C)



36 Julie D�eserti

We get the decomposition � = � 0(x + y2; y)(y; x) with

� 0 = ( y + x2 + x3; x) = ( x + y2 + y3; y)(y; x):

We can check that � 0 has a unique point of indeterminacy (0 : 1 : 0). Let
us blow up the point (1 : 0 : 0)

F1

||zz
zz

zz
zz

P2 (C)

and then apply two times Lemma 2.2.1

~~~~
~~

~~
~

  @@
@@

@@
@

~~~~
~~

~~
~

  @@
@@

@@
@

F1

||zz
zz

zz
zz

F2 F3

P2 (C)

then two times Lemma 2.2.2

~~~~
~~

~~
~

  @@
@@

@@
@

~~~~
~~

~~
~

  @@
@@

@@
@

~~~~
~~

~~
~

  @@
@@

@@
@

~~~~
~~

~~
~

  @@
@@

@@
@

F1

||zz
zz

zz
zz

F2 F3 F2 F1

P2 (C)

Finally we contract the section s1

••~~
~~

~~
~

��@@
@@

@@
@

••~~
~~

~~
~

��@@
@@

@@
@

••~~
~~

~~
~

��@@
@@

@@
@

••~~
~~

~~
~

��@@
@@

@@
@

F1

}}{{
{{

{{
{{

F2 F3 F2 F1

!!CC
CC

CC
CC

P2 ( C)
� 0=( x + y 2 + y 3 ;y )( y;x )

//_________________________________ P2 ( C)

and obtain � 0 = ( x + y2 + y3; y)(y; x).
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2.3 The de Jonqui�eres group

The de Jonqui�eres maps are, up to birational conjugacy, of the following
type �

a(y)x + b(y)
c(y)x + d(y)

;
�y + �

y + �

�
;

�
a(y) b(y)
c(y) d(y)

�
2 PGL2(C(y)) ;

�
� �

 �

�
2 PGL2(C);

let us remark that the family of lines y = constant is preserved by such
a Cremona transformation. De Jonqui�eres maps are exactly the Cremona
maps which preserve a rational �bration2. The de Jonqui�eres maps form
a group, called de Jonqui�eres group and denoted by dJ. Remark that
the exceptional set of� is reduced to a �nite number of �bers y = cte and
possibly the line at in�nity.

In some sense dJ� Bir( P2) is the analogue ofE � Aut( C2): In the 80's
Gizatullin and Iskovskikh give a presentation of Bir(P2) (see [100, 117]);
let us state the result of Iskovskikh presented inP1(C) � P1(C) which is
birationally isomorphic to P2(C).

Theorem 2.3.1 ([117]). The group of birational maps ofP1(C) � P1(C)
is generated bydJ and Aut( P1(C) � P1(C)) 3.

Moreover the relations in Bir( P1(C) � P1(C)) are the relations of dJ;
of Aut( P1(C) � P1(C)) and the relation

(�e )3 =
�

1
x

;
1
y

�
where � : (x; y) 7! (y; x) & e: (x; y) 7!

�
x;

x
y

�
:

Let f be a birational map of P2(C) of degree� . Assume that f has a
base-point p1 of multiplicity m1 = � � 1. Then we have

� 2 � (� � 1)2 �
rX

i =2

m2
i = 1 ; 3� � (� � 1) �

rX

i =2

mi = 3

where p2, : : :, pr are the other base-points off and mi the multiplicity
of pi . This implies that

P r
i =2 mi (mi � 1) = 0, hence m2 = : : : = mr = 1

and r = 2 � � 1. For simplicity let us assume that the pi 's are in P2(C). The
homaloidal system � f consists of curves of degree� with singular point p1

of multiplicity � � 1 passing simply to 2� � 2 points p2, : : :, p2� � 1. The
corresponding Cremona transformation is a de Jonqui�eres transformation.

2Here a rational �bration is a rational application from P2 (C) into P1 (C) whose �bers
are rational curves.

3The de Jonqui�eres group is birationally isomorphic to the s ubgroup of Bir( P1 (C) �
P1 (C)) which preserves the �rst projection p: P1 (C) � P1 (C) ! P1 (C):
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Indeed let � be an element of � f . Let � be the pencil of curves of � f

that have in common with � a point m distinct from p1, : : :, p2� � 1. The
number of intersections of � with a generic curve of � that are absorbed
by the pi 's is at least

(� � 1)(� � 2) + 2 � � 2 + 1 = � (� � 1) + 1

one more than the number given by Bezout's theorem. The curves of �
are thus all split into � and a line of the pencil centered in p1. Let us
assume thatp1 = (1 : 0 : 0); then � is given by

x � � 2(y; z) +  � � 1(y; z); deg i = i:

To describe � f we need an arbitrary curve taken from � f and outside �
which gives

(x � � 2 +  � � 1)(a0y + a1z) + x' � � 1(y; z) + ' � (y; z); deg' i = i:

Therefore f can be represented by

(x : y : z) 99K
�
x' � � 1 + ' � : (x � � 2 +  � � 1)(ay + bz) : (x � � 2 +  � � 1)(cy + dz)

�

with ad � bc 6= 0. We can easily check that f is invertible and that � f

and � f � 1 have the same type. At last we have in the a�ne chart z = 1

�
x' � � 1(y) + ' � (y)

x � � 2(y) +  � � 1(y)
;

ay + b
cy + d

�
:

2.4 No dichotomy in the Cremona group

There is a strong dichotomy in Aut(C2) (see x2.1); we will see that there
is no such dichotomy in Bir(P2). Let us consider the family of birational
maps (f �;� ) given by

P2(C) 99KP2(C); (x : y : z) 7! (( �x + y)z : �y (x + z) : z(x + z)) ;

�; � 2 C� ; j� j = j� j = 1

so in the a�ne chart z = 1

f �;� (x; y) =
�

�x + y
x + 1

; �y
�

:
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Theorem 2.4.1 ([66]). The �rst dynamical degree4 of f �;� is equal to 1;
more preciselydegf n

�;� � n:
Assume that � and � are generic and have modulus1. If g commutes

with f �;� ; then g coincides with an iterate of f �;� ; in particular the cen-
tralizer of f �;� is countable.

The elementsf 2
�;� have two �xed points m1; m2 and

� there exists a neighborhoodV1 of m1 on which f �;� is conjugate
to (�x; �y ); in particular the closure of the orbit of a point of V1

(under f �;� ) is a torus of dimension 2;

� there exists a neighborhoodV2 of m2 such that f 2
�;� is locally lineari-

zable onV2; the closure of a generic orbit of a point ofV2 (under
f 2

�;� ) is a circle.

In the a�ne chart ( x; y) the mapsf �;� preserve the 3-manifoldsjyj= cte.
The orbits presented below are bounded in a copy ofR2 � S1: The dynamic
happens essentially in dimension 3; di�erent projections allow us to have
a good representation of the orbit of a point. In the a�ne chart z = 1 let
us denote byp1 and p2 the two standard projections. The given pictures
are representations (in perspective) of the following projections.

� Let us �rst consider the set


 1(m; �; � ) =
�

(p1(f n
�;� (m)) ; Im(p2(f n

�;� (m))))
�
� n = 1 ::30000

	
;

this set is contained in the product of R2 with an interval. The
orbit of a point under the action of f �;� is compressed by the double
covering (x; �e i � ) ! (x; � sin � ):

� Let us introduce


 2(m; �; � ) =
�

(Re(p1(f n
�;� (m))) ; p2(f n

�;� (m)))
�
� n = 1 ::30000

	

which is contained in a cylinder R � S1; this second projection shows
how to \decompress" 
 1 to have the picture of the orbit.

Let us assume that � = exp(2 i
p

3) and � = exp(2 i
p

2); let us denote
by 
 i (m) instead of 
 i (m; �; � ):

4For a birational map f of P2 (C) the �rst dynamical degree is given by � (f ) =
lim

n ! + 1
(deg f n )1=n .
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The following pictures illustrate Theorem 2.4.1.


 1(10� 4i ; 10� 4i ) 
 2(10� 4i ; 10� 4i )

It is \the orbit" of a point in the linearization domain of (0 : 0 : 1); we
note that the closure of an orbit is a torus.


 1(10000 + 10� 4i ; 10000 + 10� 4i ) 
 2(10000 + 10� 4i ; 10000 + 10� 4i )

It is \the orbit" under f 2
�;� of a point in the linearization domain of

(0 : 1 : 0); the closure of an \orbit" is a topological circle. The singularities
are artifacts of projection.

Remark 2.4.2. The line z = 0 is contracted by f �;� on (0 : 1 : 0) which
is blow up onz = 0 : the map f �;� is not algebraically stable(seeChapter
3) that's why we considerf 2

�;� instead of f �;� :

The theory does not explain what happens outside the linearization
domains. BetweenV1 and V2 the experiences suggest a chaotic dynamic
as we can see below.


 1(0:4 + 10� 4i ; 0:4 + 10� 4i ) 
 2(0:4 + 10� 4i ; 0:4 + 10� 4i )

We note a deformation of the invariant tori.
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 1(0:9 + 10� 4i ; 0:9 + 10� 4i ) 
 2(0:9 + 10� 4i ; 0:9 + 10� 4i )


 1(1 + 10 � 4i ; 1 + 10� 4i ) 
 2(1 + 10 � 4i ; 1 + 10� 4i )


 1(1:08 + 10� 4i ; 1:08 + 10� 4i ) 
 2(1:08 + 10� 4i ; 1:08 + 10� 4i )

The invariant tori �nally disappear; nevertheless the pictures seem to
organize themselves around a closed curve.

So if there is no equivalence between �rst dynamical degree strictly
greater than 1 and countable centraliser we have an implication; more
precisely we have the following statement.

Theorem 2.4.3 ([43]). Let f be a birational map of the complex projective
plane with �rst dynamical degree � (f ) strictly greater than 1: If  is an
element of Bir( P2) which commutes withf; there exist two integersm in
N� and n in Z such that  m = f n :



Chapter 3

Classi�cation and
applications

3.1 Notions of stability and dynamical de-
gree

Let X , Y be two compact complex surfaces and letf : X 99KY be a dom-
inant meromorphic map. Let � f be the graph of f and let � 1 : � f ! X ,
� 2 : � f ! Y be the natural projections. If � f is a singular submani-
fold of X � Y , we consider a desingularization of �f without changing
the notation. If � is a di�erential form of bidegree (1; 1) on Y , then � �

2 �
determines a form of bidegree (1; 1) on � f which can be pushed forward
as a current f � � := � 1� � �

2 � on X thanks to the �rst projection. Let us
note that f � induces an operator between H1;1(Y;R) and H1;1(X; R) : if �
and 
 are homologous, thenf � � and f � 
 are homologous. In a similar way
we can de�ne the push-forward f � := � 2� � �

1 : Hp;q (X ) ! Hp;q (Y ). Note
that when f is bimeromorphic f � = ( f � 1) � .

Assume that X = Y . The map f is algebraically stable if there
exists no curveV in X such that f k (V ) belongs to Indf for some integer
k � 0.

Theorem-De�nition 3.1.1 ([73]). Let f : S ! S be a dominating mero-
morphic map on a K•ahler surface and let ! be a K•ahler form. Then f is
algebraically stable if and only if any of the following holds:

� for any � 2 H1;1(S) and any k in N; we have(f � )k � = ( f k ) � � ;

� there is no curve C in S such that f k (C) � Ind f for some integer
k � 0;

� for all k � 0 we have(f k ) � ! = ( f � )k !:

42
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In other words for an algebraically stable map the following does not
happen

. . ... . .
fffff

C

i.e. the positive orbit 1 of p1 2 Ind f � 1 intersects Indf .

Remark 3.1.2. Let f be a Cremona transformation. The mapf is not
algebraically stable if and only if there exists an integerk such that

degf k < (degf )k :

So if f is algebraically stable, then� (f ) = deg f:

Examples 3.1.3. � An automorphism of P2(C) is algebraically stable.

� The involution � : P2(C) 99K P2(C); (x : y : z) 7! (yz : xz : xy)
is not algebraically stable: Ind � � 1 = Ind � � 1; moreover deg� 2 = 1
and (deg� )2 = 4 :

Examples 3.1.4. Let A be an automorphism of the complex projective
plane and let � be the birational map given by

� : P2(C) 99KP2(C); (x : y : z) 99K(yz : xz : xy):

Assume that the coe�cients of A are positive real numbers. The mapA�
is algebraically stable([52]).

Let A be an automorphism of the complex projective plane and let� be
the birational map given by

� : P2(C) 99KP2(C); (x : y : z) 99K(xy : z2 : yz):

Assume that the coe�cients of A are positive real numbers. We can verify
that A� is algebraically stable. The same holds with

� : P2(C) 99KP2(C); (x : y : z) 99K(x2 : xy : y2 � xz):

Let us say that the coe�cients of an automorphism A of P2(C) are al-
gebraically independent ifA has a representative inGL3(C) whose coe�-
cients are algebraically independent overQ: We can deduce the following:
let A be an automorphism of the projective plane whose coe�cients are
algebraically independent overQ; then A� and (A� ) � 1 are algebraically
stable.

1The positive orbit of p1 under the action of f is the set f f n (p1 ) j n � 0g.
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Diller and Favre prove the following statement.

Theorem 3.1.5 ([73], theorem 0.1). Let S be a rational surface and let
f : S 99K S be a birational map. There exists a birational morphism
" : eS ! S such that "f " � 1 is algebraically stable.

Idea of the proof. Let us assume that f is not algebraically stable; hence
there exists a curveC and an integer k such that C is blown down onto p1

and pk = f k � 1(p1) is an indeterminacy point of f .
The idea of Diller and Favre is the following: after blowing up the

points pi the image of C is, for i = 1 ; : : : ; k; a curve. Doing this for any
element of Excf whose an iterate belongs to Indf we get the statement.

Remark 3.1.6. There is no similar result in higher dimension. Let us
recall the following statement due to Lin([129, Theorem 5.7]): suppose
that A = ( aij ) 2 Mn (Z) is an integer matrix with det A = 1 . If � and
� are the only eigenvalues ofA of maximal modulus, also with algebraic
multiplicity one, and if � = j� je2i �# with # 2 Q; then there is no toric
birational model which makes the corresponding monomial map

f A : Cn ! Cn ; (x1; : : : ; xn ) 7!

0

@
Y

j

xa1 j
j ; : : : ;

Y

j

xanj
j

1

A

algebraically stable. A3 � 3 example is([110])

A =

2

4
� 1 1 0
� 1 0 1
1 0 0

3

5 ;

in higher dimension
�

A 0
0 Id

�
where 0 is the zero matrix and Id is the

identity matrix works.

The �rst dynamical degree of f is de�ned by

� (f ) = lim sup
n ! + 1

j(f n ) � j1=n

where j : j denotes a norm on End(H1;1(X; R)) ; this number is greater or
equal to 1 (see[157, 91]). Let us remark that for all birational maps f we
have the inequality

� (f )n � degf n

where degf is the algebraic degree off (the algebraic degree off = ( f 0 :
f 1 : f 2) is the degree of the homogeneous polynomialsf i ).
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Examples 3.1.7. � The �rst dynamical degree of a birational map of
the complex projective plane of �nite order is equal to1.

� The �rst dynamical degree of an automorphism ofP2(C) is equal to1.

� The �rst dynamical degree of an elementary automorphism(resp. a
de Jonqui�eres map) is equal to1.

� The �rst dynamical degree of a H�enon automorphism of degreed is
equal to d.

� The �rst dynamical degree of the monomial map

f B : (x; y) 7! (xayb; xcyd)

is the largest eigenvalue ofB =
�

a b
c d

�
.

� Let us set E = C=Z[i ], Y = E � E = C2=Z[i ] � Z[i ] and B =�
a b
c d

�
. The matrix B acts linearly on C2 and preservesZ[i ] � Z[i ]

so B induces a mapGB : E � E ! E � E . The surface E � E is not
rational whereasX = Y=(x; y) � (ix; iy) is. The matrix B induces a
map GB : E � E ! E � E that commutes with(ix; iy) so GB induces
a map gB : X ! X birationally conjugate to an element ofBir( P2).
The �rst dynamical degree of gB is equal to the square of the largest
eigenvalue ofB .

Let us give some properties about the �rst dynamical degree. Let us
recall that a Pisot number is a positive algebraic integer greater than 1
all of whose conjugate elements have absolute value less than 1. A real al-
gebraic integer is aSalem number if all its conjugate roots have absolute
value no greater than 1, and at least one has absolute value exactly 1.

Theorem 3.1.8 ([73]). The set
�

� (f ) j f 2 Bir( P2)
	

is contained in f 1g [ P [ S where P (resp. S) denotes the set of Pisot
(resp. Salem) numbers.

In particular it is a subset of algebraic numbers.

3.2 Classi�cation of birational maps

Theorem 3.2.1 ([99, 73, 32]). Let f be an element ofBir( P2); up to
birational conjugation, exactly one of the following holds.
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� The sequencej(f n ) � j is bounded, the mapf is conjugate either to
(�x : �y : z) or to (�x : y + z : z);

� the sequencej(f n ) � j grows linearly, and f preserves a rational �bra-
tion. In this case f cannot be conjugate to an automorphism of a
projective surface;

� the sequencej(f n ) � j grows quadratically, and f is conjugate to an
automorphism preserving an elliptic �bration.

� the sequence j(f n ) � j grows exponentially; the spectrum of f �

outside the unit disk consists of the single simple eigenvalue � (f ),
the eigenspace associated to� (f ) is generated by a nef class� + 2
H1;1(P2(C)) . Moreover f is conjugate to an automorphism if and
only if (� + ; � + ) = 0 .

In the second and third cases, the invariant �bration is unique.

De�nition 3.2.2. Let f be an element ofBir( P2).

� If
�

degf k
	

k2 N is bounded,f is elliptic ;

� if
�

degf k
	

k2 N grows linearly (resp. quadratically), then f is a de
Jonqui�eres twist (resp. an Halphen twist );

� if
�

degf k
	

k2 N grows exponentially,f is hyperbolic .

Remark 3.2.3. If
�

degf k
	

k2 N grows linearly (resp. quadratically) then f
preserves a pencil of rational curves(resp. elliptic curves); up to birational
conjugacy f preserves a pencil of lines, i.e. belongs to the de Jonqui�eres
group (resp. preserves an Halphen pencil, i.e. a pencil of(elliptic ) curves
of degree3n passing through9 points with multiplicity n).

3.3 Picard-Manin space

Manin describes in [132, Chapter 5] the inductive limit of the Picard group
of any surface obtained by blowing up any point of a surface S. Then he
shows that the group Bir(S) linearly acts on this limit group.

� Let S be a K•ahler compact complex surface. Let Pic(S) be the Picard
group of S and let NS(S) be its N�eron-Severi group2. Let us consider the
morphism from Pic(S) into NS(S) which associates to any line bundleL
its Chern class c1(L ); its kernel is denoted by Pic0(S). The dimension
of NS(R) 
 R is called the Picard number of S and is denoted by� (S).

2The N�eron-Severi group of a variety is the group of divisors modulo algebraic equiv-
alence.
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There is an intersection form on the Picard group, there is also one on
the N�eron-Severi group; when S is projective, its signature is (1; � (S) � 1).
The nef cone is denoted by NS+ (S) or Pic+ (S) when NS(S) = Pic(S). Let
S and S0 be two surfaces and let� : S ! S0 be a birational morphism.
The morphism � � is injective and preserves the nef cone:� � (NS+ (S0)) �
NS+ (S). Moreover for any `, `0 in Pic(S), we have (� � `; � � `0) = ( `; ` 0).

� Let S be a K•ahler compact complex surface. LetB(S) be the category
which objects are the birational morphisms � 0: S0 ! S. A morphism
between two objects � 1 : S0

1 ! S and � 2 : S0
2 ! S of this category is a

birational morphism " : S0
1 ! S0

2 such that � 2" = � 1. In particular the set
of morphisms between two objects in either empty, or reduced to a unique
element.

This set of objects is ordered as follows:� 1 � � 2 if and only if there
exists a morphism from � 1 to � 2; we thus say that � 1 (resp. S0

1) domi-
nates � 2 (resp. S0

2). Geometrically this means that the set of base-points
of � � 1

1 contains the set of base-points of� � 1
2 . If � 1 and � 2 are two objects

of B(S) there always exists another one which simultaneously dominates
� 1 and � 2. Let us set

Z (S) = lim
!

NS(S0)

the inductive limit is taken following the injective morphism � � .
The group Z (S) is called Picard-Manin space space of S. The inva-

riant structures of � � induce invariant structures for Z (S):

� an intersection form (; ) : Z (S) � Z (S) ! Z;

� a nef coneZ + (S) = lim
!

NS+ (S);

� a canonical class, viewed as a linear form 
 :Z (S) ! Z.

Note that NS(S0) embeds into Z (S) so we can identify NS(S0) and its
image in Z (S).

Let us now describe the action of birational maps of S onZ (S). Let S1

and S2 be two surfaces and letf be a birational map from S1 to S2. Accor-
ding to Zariski Theorem we can remove the indeterminacy off thanks
to two birational morphisms � 1 : S0 ! S1 and � 2 : S0 ! S2 such that
f = � 2� � 1

1 . The map � 1 (resp. � 2) embedsB(S0) into B(S1) (resp. B(S2)).
Since any object of B(S1) (resp. B(S2)) is dominated by an object of
� 1� (B(S)) (resp. � 2� (B(S))) we get two isomorphisms

� 1� : Z (S0) ! Z (S1); � 2� : Z (S0) ! Z (S2):

Then we set f � = � 2� � � 1
1� .

Theorem 3.3.1 ([132], page 192). The map f 7! f � induces an injective
morphism from Bir(S) into GL(Z (S)).
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If f belongs toBir(S) , the linear map f � preserves the intersection form
and the nef cone.

Let us denote by Eclat(S) the union of the surfaces endowed with a
birational morphism � : S0 ! S modulo the following equivalence relation:
S 3 p1 � p2 2 S if and only if " � 1

2 "1 sendsp1 onto p2 and is a local
isomorphism between a neighborhood ofp1 and a neighborhood ofp2. A
point of Eclat(S) corresponds either to a point of S, or to a point on an
exceptional divisor of a blow-up of S etc. Any surface S0 which dominates
S embeds into Eclat(S). Let us consider the free abelian group Ec(S)
generated by the points of Eclat(S); we have a scalar product on Ec(S)

(p; p)E = � 1; (p; q) = 0 if p 6= q:

The group Ec(S) can be embedded inZ (S) (see [43]). If p is a point
of Eclat(S) let us denote by ep the point of Z (S) associated top, i.e. ep

is the class of the exceptional divisor obtained by blowing upp. This
determines the image of the basis of Ec(S) inZ (S) so we have the morphism
de�ned by

Ec(S) ! Z (S);
X

a(p)p 7!
X

a(p)ep:

Using this morphism and the canonical embedding from NS(S) intoZ (S)
we can consider the morphism

NS(S) � Ec(S) ! Z (S):

Proposition 3.3.2 ([132], p.197). The morphism NS(S) � Ec(S) ! Z (S)
induces an isometry between(NS(S); (�; �)) � (Ec(S); (�; �)E ) and (Z (S); (�; �)) .

Example 3.3.3. Let us consider a point p of P2(C), BlpP2 the blow-up
of p and let us denote byEp the exceptional divisor. Let us now consider
q 2 BlpP2 and as previously we de�neBlp;q P2 and Eq. The elementsep

and eq belong to the image ofNS(Blp;q P2) in Z (P2). If fEp is the strict
transform of Ep in Blp;q P2 the elementep (resp. eq) corresponds tofEp+ Eq

(resp. Eq). We can check that(ep; eq) = 0 and (ep; ep) = 1 .

� The completed Picard-Manin spaceZ (S) of S is the L 2-completion
of Z (S); in other words

Z (S) =
�

[D ] +
X

ap[Ep]
�
� [D ] 2 NS(S); ap 2 R;

X
a2

p < 1
	

:

Note that Z (S) corresponds to the case where theap vanishes for all but
a �nite number of p 2 Eclat(S).
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Example 3.3.4. For S = P2(C) the N�eron-Severi group NS(S) is iso-
morphic to Z[H ] where H is a line. Thus the elements ofZ (S) are given
by

a0[H ] +
X

p2 Eclat(S)

ap[Ep]; with
X

a2
p < 1 :

The group Bir(S) acts on Z (S); let us give details when S = P2(C).
Let f be a birational map from P2(C) into itself. According to Zariski
Theorem there exist two morphisms � 1; � 2 : S ! P2(C) such that f =
� 2� � 1

1 . De�ning f � by f � = ( � �
1 ) � 1� �

2 and f � by f � = ( f � ) � 1 we get
the representation f 7! f � of the Cremona group in the orthogonal group
of Z (P2) (resp. Z (P2)) with respect to the intersection form. Since for
any p in P2(C) such that f is de�ned at p we have f � (ep) = ef (p) this
representation is faithful; it also preserves the integral structure ofZ (P2)
and the nef cone.

� Only one of the two sheets of the hyperboloid
�

[D ]2Z (P2)
�
� [D ]2=1

	

intersects the nef coneZ (P2); let us denote it by HZ . In other words

HZ =
�

[D ] 2 Z (P2)
�
� [D ]2 = 1 ; [H ] � [D ] > 0

	
:

We can de�ne a distance onHZ :

cosh(dist([D1]; [D2])) = [ D1] � [D2]:

The spaceHZ is a model of the \hyperbolic space of in�nite dimension";
its isometry group is denoted by Isom(HZ ) (see [103], x6). As the action
of Bir( P2) on Z (P2) preserves the two-sheeted hyperboloid and as the
action also preserves the nef cone we get a faithful representation of Bir(P2)
into Isom(HZ ). In the context of the Cremona group we will see that
the classi�cation of isometries into three types has an algebraic-geometric
meaning.

� As HZ is a complete cat(� 1) metric space, its isometries are either
elliptic, or parabolic, or hyperbolic ( see [98]). In the case of hyperbolic
case we can characterize these isometries as follows:

� elliptic isometry: there exists an element` in Z (S) such that f � (`) =
` and (`; ` ) > 0 then f � is a rotation around ` and the orbit of any p
in Z (S) (resp. any p in HZ ) is bounded;

� parabolic isometry: there exists a non zero element̀ in Z + (S) such
that f � (`) = `. Moreover (̀ ; ` ) = 0 and R` is the unique inva-
riant line by f � which intersects Z + (S). If p belongs toZ + (S), then
lim

n !1
f n

� (Rp) = R`.
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� hyperbolic isometry: there exists a real number� > 1 and two ele-
ments `+ and ` � in Z (S) such that f � (`+ ) = �` + and f � (` � ) =
(1=� )` � . If p is a point of Z + (S) n R` � , then

lim
n !1

�
1
�

� n

f n
� (p) = v 2 R`+ n f 0g;

We have a similar property for ` � and f � 1.

This classi�cation and Diller-Favre classi�cation (Theorem 3.2.1) are
related by the following statement.

Theorem 3.3.5 ([43]). Let f be a birational map of a compact complex
surface S. Let f � be the action induced byf on Z (S).

� f � is elliptic if and only if f is an elliptic map: there exists an
element ` in Z + (S) such that f (`) = ` and (`; ` ) > 0, then f � is a
rotation around ` and the orbit of any p in Z (S) (resp. any p in HZ )
is bounded.

� f � is parabolic if and only if f is a parabolic map: there exists a non
zero ` in Z � (S) such that f (`) = `. Moreover (`; ` ) = 0 and R` is
the unique invariant line by f � which intersectsZ + (S). If p belongs
to Z � (S), then lim

n ! + 1
(f � )n (Rp) = R`.

� f � is hyperbolic if and only if f is a hyperbolic map: there exists a
real number � > 1 and two elements`+ and ` � in Z (S) such that
f � (`+ ) = �` + and f � (` � ) = (1 =� )` � . If p belongs toZ + n R` � then

lim
n ! + 1

�
1
�

� n

f n
� (p) = v 2 R`+ n f 0g;

there is a similar property for ` � and f � 1.

3.4 Applications

3.4.1 Tits alternative

Linear groups satisfy Tits alternative.

Theorem 3.4.1 ([168]). Let | be a �eld of characteristic zero. Let � be
a �nitely generated subgroup ofGLn (| ): Then

� either � contains a non abelian, free group;

� or � contains a solvable3 subgroup of �nite index.
3Let G be a group; let us set G (0) = G et G ( k ) = [G ( k � 1) ; G( k � 1) ] =

haba� 1b� 1 j a; b 2 G( k � 1) i for k � 1: The group G is solvable if there exists an in-
teger k such that G ( k ) = f idg:
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Let us mention that the group of di�eomorphisms of a real manifold
of dimension � 1 does not satisfy Tits alternative (see [97] and refer-
ences therein). Nevertheless the group of polynomial automorphisms of
C2 satis�es Tits alternative ([127]); Lamy obtains this property from the
classi�cation of subgroups of Aut(C2); classi�cation established by using
the action of this group on T :

Theorem 3.4.2 ([127]). Let G be a subgroup ofAut( C2): Exactly one of
the followings holds:

� any element ofG is conjugate to an element ofE, then

{ either G is conjugate to a subgroup ofE;

{ or G is conjugate to a subgroup ofA;

{ or G is abelian, G =
S

i 2 N Gi with Gi � Gi +1 and any Gi is
conjugate to a �nite cyclic group of the form h(�x; �y )i with �;
� roots of unicity of the same order. Any element ofG has a
unique �xe point4 and this �xe point is the same for any element
of G: Finally the action of G �xes a piece of the treeT :

� G contains H�enon automorphisms, all having the same geodesic, in
this case G is solvable and contains a subgroup of �nite index iso-
morphic to Z:

� G contains two H�enon automorphisms with distinct geodesics, G thus
contains a free subgroup on two generators.

One of the common ingredients of the proofs of Theorems 3.4.1, 3.4.2,
3.4.6 is the following statement, a criterion used by Klein to construct free
products.

Lemma 3.4.3. Let G be a group acting on a setX: Let us consider � 1

and � 2 two subgroups ofG, and set � = h� 1; � 2i : Assume that

� � 1 (resp. � 2) has only 3 (resp. 2) elements,

� there exist X 1 and X 2 two non empty subsets ofX such that

X2 * X1 ; 8 � 2 � 1 n f idg; � (X 2) � X1 ; 8 � 2 � 2 n f idg; � (X 1) � X2 :

Then � is isomorphic to the free product� 1 � � 2 of � 1 and � 2:

Example 3.4.4. The matrices
�

1 2
0 1

�
and

�
1 0
2 1

�
generate a free

subgroup of rank2 in SL2(Z). Indeed let us set

� 1 =
��

1 2
0 1

� n �
� n 2 Z

�
; � 2 =

��
1 0
2 1

� n �
� n 2 Z

�
;

4as polynomial automorphism of C2
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X1 =
�

(x; y) 2 R2
�
� jxj > jyj

	
& X 2 =

�
(x; y) 2 R2

�
� jxj < jyj

	
:

Let us consider an element
 of � 1 n f idg and (x; y) an element ofX2; we
note that 
 (x; y) is of the form (x + my; y); with jmj � 2; therefore 
 (x; y)
belongs toX1. If 
 belongs to� 2 n f idg and if (x; y) belongs toX1; the
image of (x; y) by 
 belongs toX2: According to Lemma 3.4.3 we have

��
1 2
0 1

�
;

�
1 0
2 1

��
' F2 = Z � Z = � 1 � � 2:

We also obtain that
�

1 k
0 1

�
and

�
1 0
k 1

�

generate a free group of rank2 in SL2(Z) for any k � 2: Nevertheless it is
not true for k = 1 ; the matrices

�
1 1
0 1

�
and

�
1 0
1 1

�

generateSL2(Z).

Example 3.4.5. Two generic matrices in SL� (C); with � � 2, generate a
free group isomorphic toF2:

In [43] Cantat characterizes the �nitely generated subgroups of Bir(P2);
Favre reformulates, in [86], this classi�cation:

Theorem 3.4.6 ([43]). Let G be a �nitely generated subgroup of the Cre-
mona group. Exactly one of the following holds:

� Any element of G is elliptic thus

{ either G is, up to �nite index and up to birational conjugacy,
contained in the connected component ofAut(S) where S de-
notes a minimal rational surface;

{ or G preserves a rational �bration.

� G contains a (de Jonqui�eres or Halphen) twist and does not contain
hyperbolic map, thusG preserves a rational or elliptic �bration.

� G contains two hyperbolic mapsf and g such that hf; g i is free.

� G contains a hyperbolic map and for any pair(f; g ) of hyperbolic
maps, hf; g i is not a free group, then

1 �! ker � �! G
�

�! Z �! 1

and ker � contains only elliptic maps.
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One consequence is the following statement.

Theorem 3.4.7 ([43]). The Cremona group Bir( P2) satis�es Tits alter-
native.

3.4.2 Simplicity

Let us recall that a simple group has no non trivial normal subgroup. We
�rst remark that Aut( C2) is not simple; let � be the morphism de�ned by

Aut( C2) ! C� ; f 7! det jac f:

The kernel of � is a proper normal subgroup of Aut(C2): In the seventies
Danilov has established that ker � is not simple ([60]). Thanks to some
results of Schupp ([158]) he proved that the normal subgroup5 generated
by

(ea)13; a = ( y; � x); e = ( x; y + 3x5 � 5x4)

is strictly contained in Aut( C2):

More recently Furter and Lamy gave a more precise statement. Before
giving it let us introduce a length `(:) for the elements of Aut(C2):

� If f belongs toA\ E; then `(f ) = 0;

� otherwise `(f ) is the minimal integer n such that f = g1 : : : gn with
gi in A or E:

The length of the element given by Danilov is 26:
We note that `(:) is invariant by inner conjugacy, we can thus assume

that f has minimal length in its conjugacy class.

Theorem 3.4.8 ([94]). Let f be an element ofAut( C2). Assume that
det jac f = 1 and that f has minimal length in its conjugacy class.

� If f is non trivial and if `(f ) � 8; the normal subgroup generated
by f coincides with the group of polynomial automorphismsf of C2

with det jac f = 1 ;

� if f is generic6 and if `(f ) � 14; the normal subgroup generated byf
is strictly contained in the subgroup

�
f 2 Aut( C2)

�
� det jac f = 1

	

of Aut( C2).

5 Let G be a group and let f be an element of G; the normal subgroup generated by
f in G is hhfh � 1 j h 2 Gi :

6 See [94] for more details.
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Is the Cremona group simple ?
Cantat and Lamy study the general situation of a group G acting by

isometries on a� -hyperbolic space and apply it to the particular case of
the Cremona group acting by isometries on the hyperbolic spaceHZ . Let
us recall that a birational map f induces a hyperbolic isometryf � 2 HZ
if and only if f degf k gk2 N grows exponentially (Theorem 3.3.5). Another
characterization given in [46] is the following: f induces a hyperbolic isome-
try f � 2 HZ if and only if there is a f � -invariant plane in the Picard-Manin
space that intersectsHZ on a curve Ax(f � ) (a geodesic line) on whichf �

acts by a translation:

dist(x; f � (x)) = log � (f ); 8x 2 Ax( f � ):

The curve Ax(f � ) is uniquely determined and is called the axis off � . A
birational map f is tight if

� f � 2 Isom(HZ ) is hyperbolic;

� there exists a positive number" such that: if g is a birational map
and if g� (Ax( f � )) contains two points at distance " which are at
distance at most 1 from Ax(f � ) then g� (Ax( f � )) = Ax( f � );

� if g is a birational map and g� (Ax( f � )) = Ax( f � ) then gfg � 1 = f
or f � 1.

Applying their results on group acting by isometries on� -hyperbolic space
to the Cremona group, Cantat and Lamy obtain the following statement.

Theorem 3.4.9 ([46]). Let f be a birational map of the complex projec-
tive plane. If f is tight, then f k generates a non trivial normal subgroup
of Bir( P2) for some positive intergerk.

They exhibit tight elements by working with the unique irreducible
component of maximal dimension

Vd =
�

� ' � 1 j �; ' 2 Aut( P2);  2 dJ; deg = d
	

of Bir d.

Corollary 3.4.10 ([46]). The Cremona group contains an uncountable
number of normal subgroups.

In particular Bir( P2) is not simple.

3.4.3 Representations of cocompact lattices of SU(n; 1)
in the Cremona group

In [64] Delzant and Py study actions of K•ahler groups on in�nite dimen-
sional real hyperbolic spaces, describe some exotic actions of PSL2(R) on
these spaces, and give an application to the study of the Cremona group.
In particular they give a partial answer to a question of Cantat ([43]):
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Theorem 3.4.11 ([64]). Let � be a cocompact lattice in the groupSU(n; 1)
with n � 2. If � : � ! Bir( P2) is an injective homomorphism, then one of
the following two possibilities holds:

� the group � (�) �xes a point in the Picard-Manin space;

� the group � (�) �xes a unique point in the boundary of the Picard-
Manin space.



Chapter 4

Quadratic and cubic
birational maps

4.1 Some de�nitions and notations

Let Rat k be the projectivization of the space of triplets of homogeneous
polynomials of degreek in 3 variables:

Ratk = P
�

(f 0; f 1; f 2)
�
� f i 2 C[x; y; z]k

	
:

An element of Ratk has degree � k.
We associate tof = ( f 0 : f 1 : f 2) 2 Ratk the rational map

f � : (x : y : z) 99K� (f 0(x; y; z) : f 1(x; y; z) : f 2(x; y; z)) ;

where � = 1
pgcd( f 0 ;f 1 ;f 2 ) .

Let f be in Ratk ; we say that f = ( f 0 : f 1 : f 2) is purely of degree k if
the f i 's have no common factor. Let us denote by�Ratk the set of rational
maps purely of degreek. Whereas Ratk can be identi�ed to a projective
space,�Ratk is an open Zariski subset of it. An element of Ratk n �Ratk can
be written  f = (  f 0 :  f 1 :  f 2) where f belongs to Rat̀ ; where ` < k;
and  is a homogeneous polynomial of degreek � `: Let us denote by Rat
the set of all rational maps from P2(C) into itself: it is

[

k � 1

�Ratk : It's also

the injective limite of the Rat �
k 's where

Rat �
k =

�
f �

�
� f 2 Ratk

	
:

Note that if f 2 Ratk is purely of degreek then f can be identi�ed to f � :
This means that the application

�Ratk ! Rat �
k

56
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is injective. Henceforth when there is no ambiguity we use the notationf
for the elements of Ratk and for those of Rat�k . We will also say that an
element of Ratk \is" a rational map.

The space Rat contains the group of birational maps ofP2(C): Let
Bir k � Ratk be the set of birational maps f of Ratk such that f � is
invertible, and let us denote by �Bir k � Bir k the set of birational maps
purely of degreek: Set

Bir �
k =

�
f �

�
� f 2 Bir k

	
:

The Cremona group can be identi�ed to
[

k � 1

�Bir k : Note that �Bir 1 ' PGL3(C)

is the group of automorphisms ofP2(C); we have�Bir 1 ' Bir �
1 = Bir 1: The

set Rat1 can be identi�ed to P8(C) and �Rat1 is the projectivization of the
space of matrices of rank greater than 2:

For k = 2 the inclusion �Bir 2 � Bir 2 is strict. Indeed if A is in PGL3(C)
and if ` is a linear form, `A is in Bir 2 but not in �Bir 2:

There are two \natural" actions on Rat k . The �rst one is the action
of PGL3(C) by dynamic conjugation

PGL3(C) � Ratk ! Ratk ; (A; Q) 7! AQA � 1

and the second one is the action of PGL3(C)2 by left-right composition
(l.r.)

PGL3(C) � Ratk � PGL3(C) ! Ratk ; (A; Q; B ) 7! AQB � 1:

Remark that �Ratk ; Bir k and �Bir k are invariant under these two actions.
Let us denote byOdyn (Q) (resp. Ol:r: (Q)) the orbit of Q 2 Ratk under the
action of PGL3(C) by dynamic conjugation (resp. under the l.r. action).

Examples 4.1.1. Let � be the birational map given by

P2(C) 99KP2(C); (x : y : z) 99K(yz : xz : xy):

The map � is an involution whose indeterminacy and exceptional sets are
given by:

Ind � =
�

(1 : 0 : 0); (0 : 1 : 0); (0 : 0 : 1)
	

; Exc � =
�

x = 0 ; y = 0 ; z = 0
	

:

The Cremona transformation � : (x : y : z) 99K(xy : z2 : yz) has two
points of indeterminacy which are (0 : 1 : 0) and (1 : 0 : 0); the curves
contracted by � are z = 0 , resp. y = 0 . Let � be the map de�ned by
(x : y : z) 99K(x2 : xy : y2 � xz); we have

Ind � =
�

(0 : 0 : 1)
	

; Exc � =
�

x = 0
	

:
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Notice that � and � are also involutions.
The Cremona transformations f and  are birationally conjugate if

there exists a birational map� such that f =  � � 1: The three maps� , �
and � are birationally conjugate to some involutions ofPGL3(C) (see for
example [80]).

Let us continue with quadratic rational maps.
Let C[x; y; z]� be the set of homogeneous polynomials of degree� in

C3. Let us consider the rational map det jac de�ned by

det jac : Rat2 99K P(C[x; y; z]3) '
�

curves of degree 3
	

[Q] 99K [det jacQ = 0] :

Remark 4.1.2. The map det jac is not de�ned for maps [Q] such that
det jacQ � 0; such a map is up to l.r. conjugacy(Q0 : Q1 : 0) or
(x2 : y2 : xy).

Proposition 4.1.3 ([52]). The map det jac is surjective.

Proof. For the map � we obtain three lines in general position, for� the
union of a \double line" and a line, for � one \triple line" and for ( x2 :
y2 : (x � y)z) the union of three concurrent lines.

With

det jac
�

�
1
�

x2 + z2 : �
�
2

xz +
1 + �

4
x2 �

1
4

y2 : xy
�

= [ y2z = x(x � z)(x � �z )]

we get all cubics having a Weierstrass normal form.
If Q: (x : y : z) 99K(xy : xz : x2 + yz); then det jacQ = [ x(x2 � yz) = 0]

is the union of a conic and a line in generic position.
We have det jac (y2 : x2 +2xz : x2 + xy + yz) = [ y(2x2 � yz) = 0] which

is the union of a conic and a line tangent to this conic.
We use an argument of dimension to show that the cuspidal cubic

belongs to the image of det jac.
Up to conjugation we obtain all plane cubics, we conclude by using the

l.r. action.

4.2 Criterion of birationality

We will give a presentation of the classi�cation of the quadratic birational
maps. Let us recall that if � is a rational map and P a homogeneous
polynomial in three variables we say that � contracts P if the image by �
of the curve [P = 0] n Ind � is a �nite set.



Chapter 4. Quadratic and cubic birational maps 59

Remark 4.2.1. In general a rational map doesn't contract det jac f (it is
the case forf : (x : y : z) 99K(x2 : y2 : z2)) . Buts if f is a birational map
of P2(C) into itself, then det jac f is contracted by f .

Let A and B be two elements of PGL3(C). Set Q = A�B (resp.
Q = A�B; resp. Q = A�B ). Then det jac Q is the union of three lines in
general position (resp. the union of a \double" line and a \simple" line,
resp. a triple line). We will give a criterion which allows us to determine
if a quadratic rational map is birational or not.

Theorem 4.2.2 ([52]). Let Q be a rational map; assume thatQ is purely
quadratic and non degenerate(i.e. det jacQ 6� 0). Assume that Q con-
tracts det jacQ; then det jacQ is the union of three lines (non-concurrent
when they are distincts) and Q is birational.

Moreover:

� if det jacQ is the union of three lines in general position,Q is, up to
l.r. equivalence, the involution � ;

� if det jacQ is the union of a \double" line and a \simple" line,
Q = � up to l.r. conjugation.

� if det jacQ is a \triple" line, Q belongs toOl:r: (� ):

Corollary 4.2.3 ([52]). A quadratic rational map from P2(C) into itself
belongs toOl:r: (� ) if and only if it has three points of indeterminacy.

Remark 4.2.4. A birational map Q of P2(C) into itself contracts det jacQ
and doesn't contract any other curve. Is the Theorem 4.2.2 avalaible in
degree strictly larger than2 ? No, as soon as the degree is3 we can exhibit
elementsQ contracting det jacQ but which are not birational:

Q: (x : y : z) 99K(x2y : xz2 : y2z):

Remark 4.2.5. We don't know if there is an analogue to Theorem 4.2.2
in any dimension; [151] can maybe help to �nd an answer in dimension 3.

Remark 4.2.6. In [52, Chapter 1, x6] we can �nd another criterion which
allows us to determine if a quadratic rational map is rational or not.

Proof of Theorem 4.2.2. Let us see that det jacQ is the union of three
lines.

Assume that det jacQ is irreducible. Let us setQ: (x : y : z) 99K(Q0 :
Q1 : Q2). Up to l.r. conjugacy we can assume that det jacQ is contracted
on (1 : 0 : 0); then detjacQ divides Q1 and Q2 which is impossible.

In the same way if det jacQ = Lq where L is linear and q non degene-
rate and quadratic, we can assume thatq = 0 is contracted on (1 : 0 : 0);
then Q: (x : y : z) 99K(q1 : q : �q ) and so is degenerate.
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Therefore det jacQ is the product of three linear forms.

First of all let us consider the case where, up to conjugacy, det jacQ =
xyz. If the lines x = 0 and y = 0 are contracted on the same point,
for example (1 : 0 : 0), then Q: (x : y : z) 99K (q : xy : �xy ) which is
degenerate. The linesx = 0 ; y = 0 and z = 0 are thus contracted on
three distinct points. A computation shows that they cannot be aligned.
We can assume thatx = 0 (resp. y = 0, resp. z = 0) is contracted on
(1 : 0 : 0) (resp. (0 : 1 : 0); resp. (0 : 0 : 1)); let us note that Q is the
involution ( x : y : z) 99K(yz : xz : xy) up to l.r. conjugacy.

Now let us consider the case when det jacQ has two branchesx = 0
and z = 0. As we just see, the linesx = 0 and z = 0 are contracted on
two distinct points, for example (1 : 0 : 0) and (0 : 1 : 0). The map Q is
up to l.r. conjugacy Q: (x : y : z) 99K(z(�y + �z ) : x(
x + �y ) : xz). A
direct computation shows that Q is birational as soon as�� � �
 6= 0 and
in fact l.r. equivalent to � .

Then assume that det(jacQ) = z3. We can suppose thatz = 0 is
contracted on (1 : 0 : 0); then Q: (x : y : z) 99K(q : z`1 : z`2) where q is a
quadratic form and the ` i 's are linear forms.

� If ( z; `1; `2) is a system of coordinates we can write up to conjugacy

Q: (x : y : z) 99K(q : xz : yz); q = ax2 + by2 + cz2 + dxy:

The explicit computation of det(jac Q) implies: a = b = d = 0,
i.e. either Q is degenerate, orQ represents a linear map which is
impossible.

� Assume that (z; `1; `2) is not a system of coordinates,i.e.

`1 = az + `(x; y); `2 = bz+ "` (x; y):

Let us remark that ` is nonzero (otherwiseQ is degenerate), thus we
can assume that` = x. Up to l.r. equivalence

Q: (x : y : z) 99K(q : xz : z2):

An explicit computation implies the following equality: detjac Q =
� 2z2 @q

@y; thus z divides @q
@y. In other words q = �z 2 + �xz + 
x 2 + �yz:

Up to l.r. equivalence, we obtainQ = �:

Finally let us consider the case: det(jacQ) = xy(x � y). As we just
see the linesx = 0 and y = 0 are contracted on two distinct points, for
example (1 : 0 : 0) and (0 : 1 : 0): So

Q: (x : y : z) 99K(y(ax + by+ cz) : x(�x + �y + 
z ) : xy)
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with a; b; c; �; �; 
 2 C. Let us note that the image of the line x = y
by Q is ((a + b)x + cz : (� + � )x + 
z : x); it is a point if and only if c and

 are zero, thenQ does not depend onz.

Set

� 3 := Ol:r: (� ); � 2 := Ol:r: (� ); � 1 := Ol:r: (� ):

Let us consider a birational map represented by

Q: (x : y : z) 99K`(`0 : `1 : `2)

where ` and the ` i 's are linear forms, the ` i 's being independent. The
line given by ` = 0 is an apparent contracted line; indeed the action ofQ
on P2(C) is obviously the action of the automorphism (̀ 0 : `1 : `2) of
P2(C): Let us denote by � 0 the set of these maps

� 0 =
�

`(`0 : `1 : `2)
�
� `; ` i linear forms, the ` i 's being independent

	
:

We will abusively call the elements of � 0 linear elements; in fact the
set

(� 0) � =
�

f �
�
� f 2 � 0	

can be identi�ed to PGL 3(C). We have � 0 = Ol:r: (x(x : y : z)): up to l.r.
conjugacy a map`A can be written xA 0 then xid. This approach allows
us to see degenerations of quadratic maps on linear maps.

Let us remark that an element of � i has i points of indeterminacy and
i contracted curves.

An element of � i cannot be linearly conjugate to an element of � j where
j 6= i ; nevertheless they can be birationally conjugate: the involutions� ,
� and � are birationally conjugate to involutions of PGL 3(C). Let us
mention that a generic element of � i ; i � 1; is not birationally conjugate
to a linear map.

Corollary 4.2.7 ([52]). We have

�Bir 2 = � 1 [ � 2 [ � 3; Bir 2 = � 0 [ � 1 [ � 2 [ � 3:

Remarks 4.2.8. i. A N�ther decomposition of � is

(z � y : y � x : y)� (y + z : z : x)� (x + z : y � z : z):

We recover the classic fact already mentioned in [115, 3]: for any bi-
rational quadratic map Q with two points of indeterminacy, there exist`1,
`2 and `3 in PGL3(C) such that Q = `1�` 2�` 3.
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ii. The map� = ( x2 : xy : y2 � xz) of � 1 can be written `1�` 2�` 3�` 4�` 5

where

`1 = ( y � x : 2y � x : z � y + x); `2 = ( x + z : x : y);

`3 = ( � y : x + z � 3y : x); `4 = ( x + z : x : y);

`5 = ( y � x : � 2x + z : 2x � y):

Therefore each element of� 1 is of the following type`1�` 2�` 3�` 4�` 5 where
` i is in PGL3(C) (see[115, 3]). The converse is false: if thè i 's are generic
then `1�` 2�` 3�` 4�` 5 is of degree16.

4.3 Some orbits under the left-right action

As we saw Bir2 is a �nite union of l.r. orbits but it is not a closed algebraic
subset of Rat2 : the \constant" map ( yz : 0 : 0) is in the closure ofOl:r: (� )
but not in Bir 2: To precise the nature of Bir2 we will study the orbits of
� , � , � and x(x : y : z).

Proposition 4.3.1 ([52]). The dimension of � 3 = Ol:r: (� ) is 14.

Proof. Let us denote by Isot� the isotropy group of � . Let (A; B ) be
an element of (SL3(C))2 such that A� = �B ; a computation shows that
(A; B ) belongs to

���
x
�

:
y
�

: ��z
�

;
�

�x : �y :
z

��

��
; S6 � S 6

�
� �; � 2 C�

�

where

S6 =
�

id; (x : z : y); (z : y : x); (y : x : z); (y : z : x); (z : x : y)
	

:

This implies that dim Isot � = 2 :

Proposition 4.3.2 ([52]). The dimension of � 2 = Ol:r: (� ) is 13.

Proof. We will compute Isot � , i.e. let A and C be two elements of SL3(C)
such that A� = ��C where � is in C� . Let us recall that

Ind � =
�

(0 : 1 : 0); (1 : 0 : 0)
	

;

the equality A� = ��C implies that C preserves Ind� . But the points of
indetermincay of � \are not the same", they don't have the same multi-
plicity so C �xes (0 : 1 : 0) and (1 : 0 : 0); thus C = ( ax + bz : cy+ dz : ez),
where ace6= 0 : A computation shows that

A = ( �
�x + ���z : �� 2y : ���z ); C = ( 
x + �z : �y : �z )

with � 3� 2� = �
� = 1. The dimension of the isotropy group is then 3.
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Notice that the computation of Isot � shows that we have the following
relations

(
�x + ��z : � 2y : ��z )� = � (
x + �z : �y : �z ); �; 
; � 2 C� ; � 2 C:

We can compute the isotropy group of� and show that:

Proposition 4.3.3 ([52]). The dimension of � 1 is 12:

In particular we obtain the following relations: A� = �B when

A =

2

4
�" 0 �"

"
 + 2 �� � 2 ("� + � 2)
0 0 "2

3

5 ; B =

2

4
� � 0
0 " 0

 � �="

3

5 ;

where �; 
; � 2 C; �; " 2 C� :
A similar computation allows us to state the following result.

Proposition 4.3.4 ([52]). The dimension of � 0 = Ol:r: (x(x : y : z)) is 10:

4.4 Incidence conditions; smoothness of Bir 2

and non-smoothness of Bir 2

Let us study the incidence conditions between the �i 's and the smoothness
of Bir 2 :

Proposition 4.4.1 ([52]). We have

� 0 � � 1; � 1 � � 2; � 2 � � 3

(the closures are taken inBir 2); in particular � 3 is dense inBir 2:

Proof. By composing � with ( z : y : "x + z) we obtain

� "
1 =

�
y("x + z) : z("x + z) : yz

�

which is for " 6= 0 in Ol:r: (� ). But � "
1 is l.r. conjugate to

� "
2 =

�
xy : ("x + z)z : yz

�
:

Let us note that lim
" ! 0

� "
2 = ( xy : z2 : yz) = � ; so � 2 � � 3.

If we compose� with ( z : x + y : x); we have up to l.r. equivalence
(yz + xz : x2 : xy): Composing with (x : y : y + z); we obtain up to l.r.
conjugation the map f = ( yz+ y2+ xz : x2 : xy). Set g" := f (x=" : y : � "z );
up to l.r. conjugation g" can be written (� "yz + y2 � xz : x2 : xy). For
" = 0 we have the map � . Therefore � 1 is contained in � 2.
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If " is nonzero, then� can be written up to l.r. conjugation:

(x2 : xy : "2y2 + xz);

for " = 0 we obtain x(x : y : z) which is in � 0. Hence � 0 � � 1.

Thus we can state the following result.

Theorem 4.4.2 ([52]). The closures being taken inBir 2 we have

� 0 = � 0; � 1 = � 0 [ � 1; � 2 = � 0 [ � 1 [ � 2;

�Bir 2 = � 1 [ � 2 [ � 3; Bir 2 = � 3 = � 0 [ � 1 [ � 2 [ � 3

with

dim � 0 = 10; dim � 1 = 12; dim � 2 = 13 and dim � 3 = 14:

Theorem 4.4.3 ([52]). The set of quadratic birational maps is smooth in
the set of rational maps.

Proof. Because any �i is one orbit and because of the incidence conditions
it is su�cient to prove that the closure of � 3 is smooth along � 0.

The tangent space to � 0 in x(x : y : z) is given by:

T x ( x :y :z ) �
0 =

�
(� 1x2 + � 4xy + � 5xz : � 1x2 + � 2y2 + � 4xy + � 5xz + � 6yz :


 1x2 + � 6z2 + 
 4xy + 
 5xz + � 2yz)
�
� � i ; � i ; 
 i 2 C

	
:

The vector spaceS generated by

(y2 : 0 : 0); (z2 : 0 : 0); (yz : 0 : 0); (0 : z2 : 0);

(0 : 0 : y2); (0 : 0 : z2); (0 : 0 : yz)

is a supplementary of Tx (x :y :z) � 0 in Rat 2: Let f be an element of �3\�
x(x : y : z) + S

	
; it can be written

(x2 + Ay2 + Bz2 + Cyz : xy + az2 : xz + �y 2 + �z 2 + 
yz ):

Necessarilyf has three points of indeterminacy.
Assume that a 6= 0; let us remark that the second component of a

point of indeterminacy of f is nonzero. If (x : y : z) belongs to Indf; then
x = � az2=y: We have

f (� az2=y : y : z) = ( a2z4+ Ay 4+ By 2z2+ Cy3z : 0 : � az3+ �y 3+ �yz 2+ 
y 2z)

= ( P : 0 : Q):
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As f has three points of indeterminacy, the polynomialsP and Q have to
vanish on three distinct lines. In particular Q divides P:

a2z4 + Ay4 + By 2z2 + Cy3z = ( My + Nz)( � az3 + �y 3 + �yz 2 + 
y 2z):

Thus

B = � � 2 � a
; C = � �
 � a�; A = � ��: (4.4.1)

These three equations de�ne a smooth graph throughf and x(x : y : z);
of codimension 3 as �3:

Assume now that a is zero; a point of indeterminacy (x : y : z) of f
satis�es xy = 0 : If x = 0 we have

f (0 : y : z) = ( Ay2 + Bz2 + Cyz : 0 : �y 2 + �x 2 + 
yz )

and if y = 0 we have f (x : 0 : z) = ( x2 + Bz2 : 0 : xz + �z 2): The map f
has a point of indeterminacy of the form (x : 0 : z) if and only if B = � � 2.
If it happens, f has only one such point of indeterminacy. Sincef has
three points of indeterminacy, two of them are of the form (0 :y : z) and
the polynomials Ay2 + Bz2 + Cyz and �y 2 + �z 2 + 
yz are C-colinear. We
obtain the conditions

� a = 0 ; B = � � 2; A = � �� and C = � �
 if � is nonzero;

� a = B = � = A
 � �C = 0 otherwise.

Let us remark that in this last case f cannot have three points of inde-
terminacy. Finally we note that � 3 \

�
x(x : y : z) + S

	
is contained in

the graph de�ned by the equations (4.4.1). The same holds for the closure
� 3 \

�
x(x : y : z)+ S

	
which, for some reason of dimension, coincides thus

with this graph. Then � 3 is smooth along � 0:

Remark 4.4.4. Since � 3 is smooth along� 0 and since we have incidence
conditions, � 3 is smooth along� 2 and � 1: Nevertheless we can show these
two statements by constructing linear families of birational maps(see[52]).

Proposition 4.4.5 ([52]). The closure of Bir 2 in P17 ' Rat2 is not
smooth.

Proof. Let � be a degenerate birational map given byz(x : y : 0): The
tangent space toOl:r: (� ) in � is given by

T � Ol:r: (� ) =
�

(� 1x2 + � 3z2 + � 4xy + � 5xz + � 6yz : � 4y2 + � 3z2

+ � 1xy + � 5xz + � 6yz : 
 5xz + 
 6yz)
�
� � i ; � i ; 
 i 2 C

	
:
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A supplementary S of T � Ol:r: (� ) is the space of dimension 8 generated
by

(y2 : 0 : 0); (0 : x2 : 0); (0 : y2 : 0); (0 : xy : 0);

(0 : 0 : x2); (0 : 0 : y2); (0 : 0 : z2); (0 : 0 : xy):

We will prove that
�

� + S
	

\ � 3 contains a singular analytic subset of
codimension 3. Since� 3 is also of codimension 3 we will obtain, using the
l.r. action, the non-smoothness of� 3 along the orbit of � . An element Q
of

�
� + S

	
can be writen

(xz + ay2 : yz + bx2 + cy2 + dxy : ex2 + fy 2 + gz2 + hxy):

The points of indeterminacy are given by the three following equations

xz + ay2 = 0 ; yz + bx2 + cy2 + dxy = 0 ; ex2 + fy 2 + hxy = 0;

after eliminating z this yields to P1 = P2 = 0 where

P1 = � ay3 + bx3 + cxy2 + dx2y; P2 = ex4 + fx 2y2 + a2gy4 + hx3y:

Let us remark that if, for some values of the parameters,P1 vanishes on
three distinct lines and divides P2; then the corresponding map Q has
three points of indeterminacy and is birational, more preciselyQ is in � 3:
The fact that P1 divides P2 gives

P2 = ( Ax + By)P1 ,

8
>>>><

>>>>:

e = bA
f = cA + dB
a2g = � aB
h = dA + bB
aA = cB

(4.4.2)

Let us note that the set � of parameters such that

a = 0 ; bf � ce= 0 ; bh � de = 0

satis�es the system (4.4.2) (with A = e=band B = 0). The set � is of
codimension 3 and is not smooth. The intersection �0 of quadricsbf � ce=
0 and bh � de = 0 is not smooth. Indeed � 0 contains the linear spaceE
given by b = e = 0 but is not reduced to E : for example the space de�ned
by b = c = d = e = f = h is contained in � 0 and not in E: Since
codim E = codim � 0 the set � 0 is thus reducible and then not smooth; it

is the same for � : If a = b = e = 0 (resp. b = c = d = e = f = h = 1 ;
a = 0) the polynomial P1 is equal to cxy2 + dx2y (resp. x3 + xy2 + x2y)
and in general vanishes on three distinct lines. So we have constructed in
� 3 \

�
� + S

	
a singular analytic set of codimension 3:
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4.5 A geometric description of quadratic bi-
rational maps

4.5.1 First de�nitions and �rst properties

In a plane P let us consider a net of conics,i.e. a 2-dimensional linear
system � of conics. Such a system is ahomaloidal net if it possesses
three base-points, that is three points through which all the elements of �
pass. There are three di�erent such nets

� the nets � 3 of conics with three distinct base-points;

� the nets � 2 of conics passing through two points, all having at one
of them the same tangent;

� the nets � 1 of conics mutually osculating at a point.

In order to have three conics that generate a homaloidal net � it su�ces
to annihilate the minors of a matrix

�
`0 `1 `2

`0
0 `0

1 `0
2

�

whose elements are linear forms in the indeterminatesx, y and z. Indeed
the two conics described by

`0`0
1 � `0

0`1 = 0 ; `0`0
2 � `2`0

0 = 0 (4.5.1)

have four points in common. One of them ((̀ 0 = 0) \ (`0
0 = 0)) doesn't be-

long to the third conic `1`0
2 � `0

1`2 = 0 obtained from (4.5.1) by eliminating
`0=`0

0. So � is given by

a0(`0`0
1 � `0

0`1) + a1(`0`0
2 � `2`0

0) + a2(`1`0
2 � `0

1`2) = 0

with ( a0 : a1 : a2) 2 P2(C).
Let x, y, z be some projective coordinates inP and let u, v, w be some

projective coordinates in P0, another plane which coincides withP. Let f
be the algebraic correspondance between these two planes; it is de�ned by

�
' (x; y; z; u; v; w) = 0
 (x; y; z; u; v; w) = 0 :

As f is a birational isomorphism we can write ' and  as follows
�

' (x; y; z; u; v; w) = u`0(x; y; z) + v`1(x; y; z) + w`2(x; y; z);
 (x; y; z; u; v; w) = u`0

0(x; y; z) + v`0
1(x; y; z) + w`0

2(x; y; z)
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and also
�

' (x; y; z; u; v; w) = xL 0(u; v; w) + yL1(u; v; w) + zL2(u; v; w);
 (x; y; z; u; v; w) = xL 0

0(u; v; w) + yL0
1(u; v; w) + zL0

2(u; v; w)

where ` i , `0
i , L i and L 0

i are some linear forms. This implies in particular
that

(u : v : w) = ( `1`0
2 � `2`0

1 : `2`0
0 � `0`0

2 : `0`0
1 � `1`0

0) (4.5.2)

i.e. u (resp. v, resp. w) is a quadratic form in x, y, z.
On can note that if m = ( u : v : w) 2 P 0 belongs to the line D given

by a0u + a1v + a2w = 0 the point ( x : y : z) corresponding to it via (4.5.2)
belongs to the conic given by

a0(`1`0
2 � `2`0

1) + a1(`2`0
0 � `0`0

2) + a2(`0`0
1 � `1`0

0) = 0 :

So the lines of a plane thus correspond to the conics of a homaloidal net
of the other plane.

Conversely we can associate a quadratic map between two planes to a
homaloidal net of conics in one of them. Let � be an arbitrary homaloidal
net of conics in P and let us consider a projectivity � between � and the
net of lines in P0. Let m be a point of P and let us assume thatm is
not a base-point of �. The elements of � passing through m is a pencil
of conics with four base-points: the three base-points of � andm. To this
pencil corresponds a pencil of lines whose base-pointem is determined by
m. To a point m0 2 P 0 corresponds a pencil of conics inP, the image of
the pencil of lines centered inm. Therefore the map which sendsm to em
gives rise to a Cremona map fromP into P0 which sends the conics ofP
into the lines of P0.

So we have the following statement.

Proposition 4.5.1. To give a quadratic birational map between two planes
is, up to an automorphism, the same as giving a homaloidal netof conics
in one of them.

Remark 4.5.2. To a base-point of one of the two nets is associated a line
in the other plane which is an exceptional line.

4.5.2 Classi�cation of the quadratic birational maps
between planes

We can deduce the classi�cation of the quadratic birational maps between
planes from the description of the homaloidal nets � of conics in P.



Chapter 4. Quadratic and cubic birational maps 69

� If � has three distinct base-points we can assume that these points
are p0 = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1) and � is thus
given by

a0yz + a1xz + a2xy = 0 ; (a0 : a1 : a2) 2 P2(C):

The map f is de�ned by (x : y : z) 99K(yz : xz : xy) and can easily
be inverted (f is an involution).

� If � has two distinct base-points, we can assume that the conics of
� are tangent at p2 = (0 : 0 : 1) to the line x = 0 and also pass
through p0 = (1 : 0 : 0). Then � is given by

a0xz + a1xy + a2y2 = 0 ; (a0 : a1 : a2) 2 P2(C):

The map f is de�ned by (x : y : z) 99K(xz : xy : y2) and its inverse
is (u : v : w) 99K(v2 : vw : uw).

� If the conics of � are mutually osculating at p2 = (0 : 0 : 1), we
can assume that � contains the two degenerated conicsx2 = 0 and
xy = 0. Let C be an irreducible conic in �; assume that C \ (y =
0) = p0 and that p1 = (0 : 1 : 0) is the pole of y = 0 with respect
to C. Assume �nally that (1 : 1 : 1) belongs to C then C is given by
xz + y2 = 0 and � is de�ned by

a0(xz + y2) + a1x2 + a2xy = 0 ; (a0 : a1 : a2) 2 P2(C):

The map f is (x : y : z) 99K(xz � y2 : x2 : xy) and its inverse is
(u : v : w) 99K(v2 : vw : uv + w2).

Remark 4.5.3. We can see thatf and f � 1 have the same type. So the
homaloidal nets associated tof and f � 1 have the same type.

4.6 Cubic birational maps

The space of birational maps which are purely of degree 2 is smooth and
connected. Is it the case in any degree ? Let us see what happens in
degree 3. In the old texts we can �nd a description of cubic birational
maps which is based on enumerative geometry. In [52, Chapter 6] we give
a list of normal forms up to l.r. conjugation, the connectedness appearing
as a consequence of this classi�cation. The methods are classical: topo-
logy of the complement of some plane curves, contraction of the jacobian
determinant... Unfortunately, as soon as the degree is greater than 3 we
have no criterion as in degree 2: iff is the map (x2y : xz2 : y2z); the
zeroes of det jacf are contracted but f is not invertible. Nevertheless if f
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is birational, the curve det jac f = 0 is contracted and it helps in a lot of
cases. We show that in degree 3 the possible con�gurations of contracted
curves are the following unions of lines and conics:

f 5gf 4gf 3gf 2gf 1g

f 10gf 9gf 8gf 7gf 6g

f 15gf 14gf 13gf 12gf 11g

The following table gives the classi�cation of cubic birational maps up
to conjugation:
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(xz 2 + y3 : yz 2 : z3 ) f 1g f 1g 13
(xz 2 : x 2 y : z3 ) f 2g f 2g 15

(xz 2 : x 3 + xyz : z3 ) f 2g f 2g 15
(x 2 z : x 3 + z3 + xyz : xz 2 ) f 2g f 2g 14

(x 2 z : x 2 y + z3 : xz 2 ) f 2g f 2g 15
(xyz : yz 2 : z3 � x 2 y) f 2g f 8g 14

(x 3 : y2 z : xyz ) f 3g f 3g 15
(x 2 (y � z) : xy (y � z) : y2 z) f 3g f 10g 15

(x 2 z : xyz : y2 (x � z)) f 3g f 10g 15
(xyz : y2 z : x (y2 � xz )) f 3g f 10g 15

(x 3 : x 2 y : ( x � y )yz ) f 4g f 4g 15
(x 2 (x � y ) : xy (x � y ) : xyz + y3 ) f 4g f 4g 16

(xz (x + y) : yz (x + y) : xy 2 ) f 5g f 5g 16
(x (x + y)( y + z) : y (x + y)( y + z) : xyz ) f 5g f 12g 16

(x (x + y + z)( x + y) : y (x + y + z)( x + y) : xyz ) f 5g f 12g 16
(x (x 2 + y2 + 
xy ) : y (x 2 + y2 + 
xy ) : xyz ) ; 
 2 6= 4 f 6g f 6g 15 1 parameter

(xz (y + x ) : yz (y + x ) : xy (x � y )) f 7g f 7g 16
(x (x 2 + y2 + 
xy + 
 + xz + yz ) : y (x 2 + y2 + 
xy + 
 + xz + yz ) : xyz ) f 7g f 14g 16 1 parameter

(y (x � y )( x + z) : x (x � y )( z � y ) : yz (x + y)) f 7g f 14g 16
(x (x 2 + yz ) : y3 : y (x 2 + yz )) f 8g f 2g 14

(y2 z : x (xz + y2 ) : y (xz + y2 )) f 9g f 9g 15
(x (y2 + xz ) : y (y2 + xz ) : xyz ) f 10g f 3g 15
(x (y2 + xz ) : y (y2 + xz ) : xy 2 ) f 10g f 3g 15
(x (x 2 + yz ) : y (x 2 + yz ) : xy 2 ) f 10g f 3g 15

(x (xy + xz + yz ) : y (xy + xz + yz ) : xyz ) f 11g f 11g 16
(x (x 2 + yz + xz ) : y (x 2 + yz + xz ) : xyz ) f 11g f 11g 16
(x (x 2 + xy + yz ) : y (x 2 + xy + yz ) : xyz ) f 12g f 5g 16

(x (x 2 + yz ) : y (x 2 + yz ) : xy (x � y )) f 12g f 5g 16
(x (y2 + 
xy + yz + xz ) : y (y2 + 
xy + yz + xz ) : xyz ) ; 
 6= 0 ; 1 f 13g f 13g 16 1 parameter
(x (x 2 + y2 + 
xy + xz ) : y (x 2 + y2 + 
xy + xz ) : xyz ) ; 
 2 6= 4 ; f 14g f 7g 16 1 parameter

(x (x 2 + yz + xz ) : y (x 2 + yz + xz ) : xy (x � y )) f 14g f 7g 16
(x (x 2 + y2 + 
xy + �xz + yz ) : y (x 2 + y2 + 
xy + �xz + yz ) : xyz ) ; 
 2 6= 4 ; � 6= 
 � f 15g f 15g 16 2 parameters
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where 
 denotes a complex number and where


 + :=

 +

p

 2 � 4
2


 � :=

 �

p

 2 � 4
2

:

For any model we mention the con�guration of contracted curves of the
map (second column), the con�guration of the curves contracted by the
inverse (third column), the dimension of its orbit under the l.r. action
(fourth column) and the parameters (�fth column).

Any cubic birational map can be written, up to dynamical conjuga-
tion, Af whereA denotes an element of PGL3(C) and f an element of the
previous table. This classi�cation allows us to prove that the \generic"
element has the last con�guration and allows us to establish that the di-
mension of the space�Bir 3 of birational maps purely of degree 3 is 18: Up to
l.r. conjugation the elements having the generic con�gurationf 15g form a
family of 2 parameters: in degree 2 there are 3 l.r. orbits, in degree 3 an
in�nite number.

Let us note that the con�gurations obtained by degenerescence from
picture f 15g do not all appear. In degree 2 there is a similar situation: the
con�guration of three concurrent lines is not realised as the exceptional
set of a quadratic birational map.

Let us denote by X the set of birational maps purely of degree 3
having con�guration f 15g: We establish that the closure of X in �Bir 3 is
�Bir 3: We can show that �Bir 3 is irreducible, in fact rationally connected
([52, Chapter 6]); but if Bir 2 is smooth and irreducible, Bir3, viewed in
P29(C) ' Rat3, doesnt have the same properties ([52, Theorem 6.38]).

Let us mention another result. Let dJd be the subset of dJ made of
birational maps of degreed and let Vd be the subset of Bir(P2) de�ned by

Vd =
�

AfB
�
� A; B 2 PGL3(C); f 2 dJd

	
:

The dimension of Bird is equal to 4d + 6 and V d its unique irreducible
component of maximal dimension ([141]).



Chapter 5

Finite subgroups of the
Cremona group

The study of the �nite subgroups of Bir( P2) began in the 18700s with
Bertini, Kantor and Wiman ([25, 122, 172]). Since then, many mathe-
maticians has been interested in the subject, let us for example mention
[12, 15, 16, 29, 61, 79]. In 2006 Dolgachev and Iskovkikh improve the re-
sults of Kantor and Wiman and give the description of �nite subgroups
of Bir( P2) up to conjugacy. Before stating one of the key result let us
introduce some notions.

Let S be a smooth projective surface. Aconic bundle � : S ! P1(C)
is a morphism whose generic �bers have genus 0 and singular �bers are the
union of two lines. A surface endowed with conic bundles is isomorphic
either to Fn , or to Fn blown up in a �nite number of points, all belonging to
di�erent �bers (the number of blow-ups is exactly the number of singular
�bers).

A surface S is called adel Pezzo surface if � KS is ample, which
means that � KS � C > 0 for any irreducible curve C � S. Any del Pezzo
surface exceptP1(C) � P1(C) is obtained by blowing up r points p1, : : :,
pr of P2(C) with r � 8 and no 3 ofpi are collinear, no 6 are on the same
conic and no 8 lie on a cubic having a singular point at one of them. The
degree of S is 9� r .

Theorem 5.0.1 ([131, 116]). Let G be a �nite subgroup of the Cremona
group. There exists a smooth projective surfaceS and a birational map
� : P2(C) 99KS such that � G� � 1 is a subgroup ofAut(S) . Moreover one
can assume that

� either S is a del Pezzo surface;

� or there exists a conic bundleS ! P1(C) invariant by � G� � 1.

73
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Remark 5.0.2. The alternative is not exclusive: there are conic bundles
on del Pezzo surfaces.

Dolgachev and Iskovskikh give a characterization of pairs (G; S) satisfy-
ing one of the possibilities of Theorem 5.0.1. Then they use Mori theory to
determine when two pairs are birationally conjugate. Let us note that the
�rst point was partially solved by Wiman and Kantor but not the second.
There are still some open questions ([79]x9), for example the description
of the algebraic varieties that parametrize the conjugacy classes of the �-
nite subgroups of Bir(P2). Blanc gives an answer to this question for �nite
abelian subgroups of Bir(P2) with no elements with an invariant curve of
positive genus, also for elements of �nite order (resp. cyclic subgroups of
�nite order) of the Cremona group ([29, 30]).

5.1 Birational involutions

5.1.1 Geiser involutions

Let p1, : : : ; p7 be seven points ofP2(C) in general position. Let L be the
linear system of cubics through thepi 's. A cubic is given by a homogeneous
polynomial of degree 3 in 3 variables. The dimension of the space of homo-
geneous polynomials of degree 3 in 3 variables is 10 thus dimf C j C cubicg=
10� 1 = 9; cubics have to pass throughp1, : : :, p7 so dimL = 2. Let p be
a generic point ofP2(C); let us consider the pencilL p containing elements
of L through p. A pencil of generic cubics

a0C0 + a1C1; C0; C1 two cubics (a0 : a1) 2 P1(C)

has nine base-points (indeed by Bezout's theorem the intersection of two
cubics is 3� 3 = 9 points); so we de�ne by I G (p) the ninth base-point
of L p.

The involution I G = I G (p1; : : : ; p7) which sendsp to I G (p) is a Geiser
involution .

We can check that such an involution is birational, of degree 8; its
�xed points form an hyperelliptic curve of genus 3; degree 6 with 7 ordi-
nary double points which are the pi 's. The exceptional locus of a Geiser
involution is the union of seven cubics passing through the seven points of
indeterminacy of I G and singular in one of these seven points (cubics with
double point).

The involution I G can be realized as an automorphism of a del Pezzo
surface of degree 2.
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5.1.2 Bertini involutions

Let p1; : : : ; p8 be eight points of P2(C) in general position. Let us consider
the set of sexticsS = S(p1; : : : ; p8) with double points in p1; : : : ; p8: Let
m be a point of P2(C): The pencil given by the elements ofS having a
double point in m has a tenth base double pointm0: The involution which
swapsm and m0 is a Bertini involution I B = I B (p1; : : : ; p8):

Its �xed points form a non hyperelliptic curve of genus 4; degree 9 with
triple points in the pi 's and such that the normalisation is isomorphic to
a singular intersection of a cubic surface and a quadratic cone inP3(C):

The involution I B can be realized as an automorphism of a del Pezzo
surface of degree 1.

5.1.3 de Jonqui�eres involutions

Let C be an irreductible curve of degree� � 3: Assume that C has a
unique singular point p and that p is an ordinary multiple point with
multiplicity � � 2: To (C; p) we associate a birational involution I J which
�xes pointwise C and which preserves lines throughp: Let m be a generic
point of P2(C) n C; let rm ; qm and p be the intersections of the line (mp)
and C; the point I J (m) is de�ned by the following property: the cross ratio
of m; I J (m); qm and rm is equal to � 1: The map I J is a de Jonqui�eres
involution of degree� centered in p and preservingC: More precisely its
�xed points are the curve C of genus� � 2 for � � 3:

For � = 2 the curve C is a smooth conic; we can do the same construc-
tion by choosing a point p not on C:

5.1.4 Classi�cation of birational involutions

De�nition 5.1.1. We say that an involution is of de Jonqui�eres type it
is birationally conjugate to a de Jonqui�eres involution. We can also speak
about involution of Geiser type , resp. Bertini type .

Theorem 5.1.2 ([25, 12]). A non-trivial birational involution of P2(C) is
either of de Jonqui�eres type, or Bertini type, or Geiser type.

More precisely Bayle and Beauville obtained the following statement.

Theorem 5.1.3 ([12]). The map which associates to a birational involu-
tion of P2 its normalized �xed curve establishes a one-to-one correspon-
dence between:

� conjugacy classes of de Jonqui�eres involutions of degreed and iso-
morphism classes of hyperelliptic curves of genusd � 2 (d � 3);

� conjugacy classes of Geiser involutions and isomorphism classes of
non-hyperelliptic curves of genus3;
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� conjugacy classes of Bertini involutions and isomorphism classes of
non-hyperelliptic curves of genus4 whose canonical model lies on a
singular quadric.

The de Jonqui�eres involutions of degree2 form one conjugacy class.

5.2 Birational involutions and foliations

5.2.1 Foliations: �rst de�nitions

A holomorphic foliation F of codimension 1 anddegree � on P2(C) is
given by a 1-form

! = u(x; y; z)dx + v(x; y; z)dy + w(x; y; z)dz

where u; v and w are homogeneous polynomials of degree� + 1 without
common component and satisfying the Euler identity xu + vy + wz = 0 :
The singular locus SingF of F is the projectivization of the singular
locus of !

Sing! =
�

(x; y; z) 2 C3
�
� u(x; y; z) = v(x; y; z) = w(x; y; z) = 0

	
:

Let us give a geometric interpretation of the degree. LetF be a foliation of
degree� on P2(C); let D be a generic line, and letp a point of D n SingF :
We say that F is transversal to D if the leaf L p of F in p is transversal
to D in p; otherwise we say that p is a point of tangency between F
and D: The degree� of F is exactly the number of points of tangency
betweenF and D: Indeed, if ! is a 1-form of degree� + 1 on C3 de�ning
F , it is of the following type

! = P0dx + P1dy + P2dz; Pi homogeneous polynomial of degree� + 1 :

Let us denote by ! 0 the restriction of ! to the a�ne chart x = 1

! 0 = ! j x =1 = P1(1; y; z)dy + P2(1; y; z)dz:

Assume that the line D =
�

z = 0
	

is a generic line. In the a�ne chart
x = 1 the fact that the radial vector �eld vanishes on D implies that

P0(1; y; 0) + yP1(1; y; 0) = 0 :

Generically (on the choice ofD) the polynomial P0(1; y; 0) is of degree� +1
soP1(1; y; 0) is of degree� . Since! 0jD = P1(1; y; 0)dy, the restriction of ! 0

to D vanishes into � points: the number of tangencies betweenF and D
is � .

The classi�cation of foliations of degree 0 and 1 onP2(C) is known
since the XIXth century. A foliation of degree 0 on P2(C) is a pencil
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of lines, i.e. is given by xdy � ydx = x2d
� y

x

�
, the pencil of lines being

y
x = cte. Each foliation of degree 1 on the complex projective plane has
3 singularities (counting with multiplicity), has at least one invariant line
and is given by a rational closed 1-form (in other words there exists a
homogeneous polynomialP such that !=P is closed); the leaves are the
connected components of the \levels" of a primitive of this 1-form. The
possible 1-forms are

x � 0 y� 1 z� 2 ; � i 2 C;
X

i

� i = 0 ;
x
y

exp
�

z
y

�
;

Q
x2

where Q is a quadratic form of maximal rank. More generally a foliation
of degree 0 onPn (C) is associated to a pencil of hyperplanes,i.e. is given
by the levels of `1=`2 where `1, `2 are two independent linear forms. Let
F be a foliation of degree 1 onPn (C). Then

� either there exists a projection � : Pn (C) 99KP2(C) and a foliation
of degree 1 onP2(C) such that F = � � F1,

� or the foliation is given by the levels of Q=L2 where Q (resp. L ) is
of degree 2 (resp. 1).

For � � 2 almost nothing is known except the generic nonexistence of
an invariant curve ([118, 53]). Let us mention that

� there exists a description of the space of foliations of degree 2 in
P3(C) (see [54]);

� any foliation of degree 2 is birationally conjugate to another (not
necessary of degree 2) given by a linear di�erential equationdy

dx =
P(x; y) where P is in C(x)[y] (see [55]).

A regular point m of F is an in
ection point for F if L m has an
in
ection point in m: Let us denote by FlexF the closure of these points.
A way to �nd this set has been given by Pereira in [153]: let

Z = E
@

@x
+ F

@
@y

+ G
@
@z

be a homogeneous vector �eld onC3 non colinear to the radial vector �eld
R = x @

@x + y @
@y + z @

@z describing F (i.e. ! = i R i Z dx ^ dy ^ dz). Let us
consider

H =

�
�
�
�
�
�

x E Z (E)
y F Z (F )
z G Z(G)

�
�
�
�
�
�
;

the zeroes ofH is the union of FlexF and the lines invariant by F .
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5.2.2 Foliations of degree 2 and involutions

To any foliation F of degree 2 onP2(C) we can associate a birational
involution I F : let us consider a generic pointm of F ; sinceF is of degree 2;
the tangent Tm L m to the leaf through m is tangent to F at a second
point p; the involution I F is the map which swaps these two points. More
precisely let us assume thatF is given by the vector �eld �: The image
by I F of a generic point m is the point m + s� (m) where s is the unique
nonzero parameter for which� (m) and � (m + s� (m)) are colinear.

Let q be a singular point of F and let P(q) be the pencil of lines
through q: The curve of points of tangency Tang(F ; P(q)) between F and
P(q) is blown down by I F on q: We can verify that all contracted curves
are of this type.

Jouanolou example

The foliation F J is described in the a�ne chart z = 1 by

(x2y � 1)dx � (x3 � y2)dy;

this example is due to Jouanolou and is the �rst known foliation without
invariant algebraic curve.

We can computeI F J :

(xy 7 + 3 x5y2z � x8 � 5x2y4z2 + 2 y3z5 + x3yz4 � xz7 :

3xy 5z2 + 2 x5z3 � x7y � 5x2y2z4 + x4y3z + yz7 � y8 :

xy 4z3 � 5x4y2z2 � y7z + 2 x3y5 + 3 x2yz5 � z8 + x7z):

its degree is 8 and

Ind I F J = Sing F J =
�

(� j : � � 2j : 1)
�
� j = 0 ; : : : ; 6; � 7 = 1

	
:

As there is no invariant algebraic curve forF J we have

Flex F J = Fix I F J = 2(3x2y2z2 � xy5 � x5z � yz5);

this curve is irreducible.
The subgroup of Aut(P2) which preserves a foliation F of P2(C) is

called the isotropy group of F ; it is an algebraic subgroup of Aut(P2)
denoted by

Iso F =
�

' 2 Aut( P2)
�
� ' � F = F

	
:

The point (1 : 1 : 1) is a singular point of Flex F J ; it is an ordinary
double point. If we let IsoF J act, we note that each singular point of
F J is an ordinary double point of FlexF J and that Flex F J has no other
singular point. Therefore FlexF J has genus(6 � 1)(6 � 2)

2 � 7 = 3:
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The singular points of SingF J are in general position soI F J is a Geiser
involution.

The group hIF J ; IsoF J i is a �nite subgroup of Bir( P2); it cannot be
conjugate to a subgroup of Aut(P2) because FixI J is of genus 3: This
group of order 42 appears in the classi�cation of �nite subgroups of Bir(P2)
(see [80]).

The generic case

Let us recall that if F is of degree�; then # Sing F = � 2 + � + 1 (let
us precise that points are counted with multiplicity). Thus a quadratic
foliation has seven singular points counted with multiplicity; moreover if
we choose seven pointsp1; : : : ; p7 in general position, there exists one and
only one foliation F such that SingF =

�
p1; : : : ; p7

	
(see [101]).

Theorem 5.2.1 ([50]). Let p1; : : : ; p7 be seven points ofP2(C) in general
position. Let F be the quadratic foliation such thatSingF =

�
p1; : : : ; p7

	

and let I G be the Geiser involution associated to thepi 's. Then I G and
I F coincide.

Corollary 5.2.2 ([50]). The involution associated to a generic quadratic
foliation of P2(C) is a Geiser involution.

This allows us to give explicit examples of Geiser involutions. Indeed
we can explicitely write a generic foliation of degree 2 ofP2(C) : we can
assume that (0 : 0 : 1); (0 : 1 : 0); (1 : 0 : 0) and (1 : 1 : 1) are singular
for F and that the line at in�nity is not preserved by F so the foliation F
is given in the a�ne chart z = 1 by the vector �eld

�
x2y + ax2 + bxy + cx + ey

� @
@x

+
�
xy2 + Ay2 + Bxy + Cx + Ey

� @
@y

with 1+ a+ b+ c+ e = 1+ A+ B + C+ E = 0 : Then the construction detailed
in 5.1.1 allows us to give an explicit expression for the involutionI F .

Remark 5.2.3. Let us consider a foliation F of degree3 on P2(C): Every
generic line of P2(C) is tangent to F in three points. The \application"
which switches these three points is in general multivalued; we give a crite-
rion which says when this application is birational. This allows us to give
explicit examples of trivolutions and �nite subgroups ofBir( P2) (see [50]).

5.3 Number of conjugacy classes of birational
maps of �nite order

The number of conjugacy classes of birational involutions in Bir(P2) is in�-
nite (Theorem 5.1.3). Let n be a positive integer; what is the number� (n)
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of conjugacy classes of birational maps of ordern in Bir( P2) ? De Fernex
gives an answer forn prime ([61]); there is a complete answer in [27].

Theorem 5.3.1 ([27]). For n even, � (n) is in�nite; this is also true for
n = 3 , 5.

For any odd integer n 6= 3 , 5 the number of conjugacy classes� (n) of
elements of ordern in Bir( P2) is �nite. Furthermore

� � (9) = 3 ;

� � (15) = 9 ;

� � (n) = 1 otherwise.

Let us give an idea of the proof. Assume thatn is even. Let us consider
an elementP of C[xn ] without multiple root. Blanc proves that there exists
a birational map f of order 2n such that f n is the involution ( x; P (x)=y)
that �xes the hyperelliptic curve y2 = P(x). So the casen = 2 allows to
conclude for any evenn � 4.

To any elliptic curve Cwe can associate a birational mapf C of the com-
plex projective plane whose set of �xed points isC. Indeed let us consider
the smooth cubic plane curveC = f (x : y : z) 2 P2(C) j P(x; y; z) = 0 g
where P is a non-singular form of degree 3 in three variables. The surface
S = f (w : x : y : z) 2 P3(C) j w3 = P(x; y; z)g is a del Pezzo surface of
degree 3 (see for example[124]). The mapf C : w 7! exp(2i �

3 )w gives rise to
an automorphism of S whose set of �xed points is isomorphic toC. Since
the number of isomorphism classes of ellitpic curves is in�nite the number
of conjugacy classes in Bir(P2) of elements of order 3 is thus also in�nite.
A similar construction holds for birational maps of order 5.

To show the last part of the statement Blanc applies Theorem 5.0.1 to
the subgroup generated by a birational map of odd ordern � 7.

5.4 Birational maps and invariant curves

Examining Theorem 5.1.3, it is not surprising that simultaneously, Castel-
nuovo was interested in birational maps that preserve curves of positive
genus. Let C be an irreducible curve ofP2(C); the inertia group of C,
denoted by Ine(C), is the subgroup of Bir(P2) that �xes pointwise C.
Let C � P2(C) be a curve of genus> 1, then an element of Ine(C) is
either a de Jonqui�eres map, or a birational map of order 2, 3 or 4 (see
[48]). This result has been recently precised as follows.

Theorem 5.4.1 ([33]). Let C � P2(C) be an irreducible curve of genus
> 1. Any f of Ine(C) is either a de Jonqui�eres map, or a birational map
of order 2 or 3. In the �rst case, if f is of �nite order, it is an involution.
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To prove this statement Blanc, Pan and Vust follow Castelnuovo's idea;
they construct the adjoint linear system of C: let � : Y ! P2(C) be an
embedded resolution of singularities ofC and let eC be the strict transform
of C. Let � be the �xed part of the linear system j eC+ K Y j. If j eC+ K Y j
is neither empty, nor reduced to a divisor, � � j eC+ K Y j n � is the adjoint
linear system. By iteration they obtain that any element f of Ine(C)
preserves a �bration F that is rational or elliptic. If F is rational, f is a
de Jonqui�eres map. Let us assume thatF is elliptic. Since C is of genus
> 1 the restriction of f to a generic �ber is an automorphism with at most
two �xed points: f is thus of order 2, 3 or 4. Applying some classic results
about automorphisms of elliptic curves Blanc, Pan and Vust show that f
is of genus 2 or 3. Finally they note that this result cannot be extended to
curves of genus� 1; this eventuality has been dealt with in [150, 28] with
di�erent technics.

Let us also mention results due to Diller, Jackson and Sommese that
are obtained from a more dynamical point of view.

Theorem 5.4.2 ([74]). Let S be a projective complex surface andf be a
birational map on S. Assume that f is algebraically stable and hyperbolic.
Let C be a connected invariant curve off . Then C is of genus0 or 1.

If C is of genus1, then, after contracting some curves inS, there exists
a meromorphic 1-form such that

� f � ! = �! with � 2 C,

� and �C is the divisor of poles of! .

The constant � is determined solely byC and f jC .

They are also interested in the number of irreducible components of
an invariant curve of a birational map f 2 Bir(S) where S denotes a
rational surface. They prove that except in a particular case, this number
is bounded by a quantity that only depends on S.

Theorem 5.4.3 ([74]). Let S be a rational surface and letf be a birational
map on S. Assume that f is algebraically stable and hyperbolic. LetC � S
be a curve invariant byf .

If one of the connected components ofC is of genus1 the number of
irreducible components ofC is bounded bydim Pic(S) + 2 .

If every connected component ofC has genus0 then

� either C has at mostdim Pic(S) + 1 irreducible components;

� or there exists an holomorphic map� : S ! P1(C), unique up to
automorphisms of P1(C), such that C contains exactly k � 2 dis-
tinct �bers of � , and C has at most dim Pic(S) + k � 1 irreducible
components.



Chapter 6

Automorphism groups

6.1 Introduction

A lot of mathematicians have been interested in and are still interested in
the algebraic properties of the di�eomorphisms groups of manifolds. Let
us for example mention the following result. Let M and N be two smooth
manifolds without boundary and let Di� p(M) denote the group of Cp-
di�eomorphisms of M: In 1982 Filipkiewicz proves that if Di� p(M) and
Di� q(N) are isomorphic as abstract groups thenp = q and the isomorphism
is induced by a Cp-di�eomorphism from M to N :

Theorem 6.1.1 ([87]). Let M and N be two smooth manifolds without
boundary. Let ' be an isomorphism betweenDi� p(M) and Di� q(N) : Then
p is equal toq and there exists : M ! N of classCp such that

' (f ) =  f  � 1; 8f 2 Di� p(M) :

There are similar statements for di�eomorphisms which preserve a vo-
lume form, a symplectic form ([7, 8])... If M is a Riemann surface of
genus larger than 2, then the group of di�eomorphisms which preserve
the complex structure is �nite. Thus there is no hope to obtain a similar
result as Theorem 6.1.1: we can �nd two distinct curves of genus 3 whose
automorphisms group is trivial. More generally if M is a complex compact
manifold of general type, then Aut(M) is �nite and often trivial. On the
contrary let us mention two examples of homogeneous manifolds:

� any automorphism of Aut( P2) is the composition of an inner auto-
morphism, the action of an automorphism of the �eld C and the
involution u 7! t u� 1 (see for example [71]);

� the automorphisms group of the torusC=� is the semi-direct product
C=� o Z =2Z ' R2=Z2 o Z =2Z for all lattices � 6= Z[i ]; Z[j ].

82
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In the �rst part of the Chapter we deal with the structure of the group
of automorphisms of the a�ne group A�( C) of the complex line (Theo-
rem 6.2.1). Let us say a few words about it. Let� be an automorphism
of A�( C) and let G be a maximal (for the inclusion) abelian subgroup
of A�( C); then � (G) is still a maximal abelian subgroup of A�( C). We
get the nature of � from the precise description of the maximal abelian
subgroups of A�( C).

In the second part of the Chapter we are focused on the automor-
phisms group of polynomial automorphisms ofC2. Let � be an auto-
morphism of Aut( C2). Using the structure of amalgamated product of
Aut( C2) (Theorem 2.1.2) Lamy determines the centralisers of the elements
of Aut( C2) (see [127]); we thus obtain that the set of H�enon automor-
phisms is preserved by� (Proposition 6.3.5). Since the elementary group
E is maximal among the solvable subgroups of length 3 of Aut(C2) (Propo-
sition 6.3.7) we establish a property of rigidity for E: up to conjugation by
a polynomial automorphism of the plane� (E) = E (seeProposition 6.3.8).
This rigidity allows us to characterize � .

We �nish Chapter 6 with the description of Aut(Bir( P2)). Let � be an
automorphism of Bir(P2). The study of the uncountable maximal abelian
subgroups G of Bir(P2) leads to the following alternative: either G owns an
element of �nite order, or G preserves a rational �bration (that is G is, up
to conjugation, a subgroup of dJ = PGL2(C(y)) o PGL2(C)). This allows
us to prove that PGL 3(C) is pointwise invariant by � up to conjugacy and
up to the action of an automorphism of the �eld C. The last step is to
establish that ' (� ) = � ; we then conclude with Theorem 2.1.4.

6.2 The a�ne group of the complex line

Let A�( C) =
n

z 7! az + b
�
� a 2 C� ; b 2 C

o
be the a�ne group of the

complex line.

Theorem 6.2.1. Let � be an automorphism ofA�( C): Then there exist
� an automorphism of the �eld C and  an element ofA�( C) such that

� (f ) = � ( f  � 1); 8 f 2 A�( C):

Proof. If G is a maximal abelian subgroup of A�( C) then � (G) too. The
maximal abelian subgroups of A�(C) are

T =
n

z 7! z + �
�
� � 2 C

o
and Dz0 =

n
z 7! � (z � z0) + z0

�
� � 2 C�

o
:

Note that T has no element of �nite order so � (T) = T and � (Dz0 ) = D z0
0
:

Up to a conjugacy by an element of T one can suppose that� (D0) = D 0:
In other words one has
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� an additive morphism � 1 : C ! C such that

� (z + � ) = z + � 1(� ); 8 � 2 C;

� a multiplicative one � 2 : C� ! C� such that

� (�z ) = � 2(� )z; 8 � 2 C� :

On the one hand we have

� (�z + � ) = � (�z )� (z + 1) = � 2(� )z + � 2(� )� 1(1)

and on the other hand

� (�z + � ) = � (z + � )� (�z ) = � 2(� )z + � 1(� ):

Therefore� 1(� ) = � 2(� )� where� = � 1(1): In particular � 1 is multiplicative
and additive, i.e. � 1 is an automorphism of the �eld C (and � 2 too).

Then

� (�z + � ) = � 2(� )z + � 1(� ) = � 2(� )z + � 2(� )� = � 2(�z + � � 1
2 (� )� )

= � 2(� � 1
2 (� )z � �z + � � � 2(� )z):

Let us denote by Aut(Cn ) the group of polynomial automorphisms of
Cn . Ahern and Rudin show that the group of holomorphic automorphisms
of Cn and the group of holomorphic automorphisms ofCm have di�erent
�nite subgroups when n 6= m (see [2]); in particular the group of holo-
morphic automorphisms of Cn is isomorphic to the group of holomorphic
automorphisms of Cm if and only if n = m: The same argument holds for
Aut( Cn ) and Aut( Cm ):

6.3 The group of polynomial automorphisms
of the plane

6.3.1 Description of the automorphisms group of Aut( C2)

Theorem 6.3.1 ([66]). Let � be an automorphism ofAut( C2): There
exist  in Aut( C2) and an automorphism� of the �eld C such that

� (f ) = � ( f  � 1); 8 f 2 Aut( C2):
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Remark 6.3.2. Let us mention the existence of a similar result for the
subgroup of tame automorphisms ofAut( Cn ): every automorphism of the
group of polynomial automorphisms of complex a�ne n-space inner up
to �eld automorphisms when restricted to the subgroup of tame automor-
phisms ([126]).

The section is devoted to the proof of Theorem 6.3.1 which uses the
well known amalgamated product structure of Aut(C2) (Theorem 2.1.2).
Let us recall that a H�enon automorphism is an automorphism of the
type 'g 1 : : : gp ' � 1

' 2 Aut( C2); gi = ( y; Pi (y) � � i x); Pi 2 C[y]; degPi � 2; � i 2 C� ;

and that

A=
�

(a1x + b1y + c1; a2x + b2y + c2)
�
� ai ; bi ; ci 2 C; a1b2 � a2b1 6= 0

	
;

E=
�

(�x + P(y); �y + 
 )
�
� �; �; 
 2 C; �� 6= 0 ; P 2 C[y]

	
:

Let us also recall the two following statements.

Proposition 6.3.3 ([92]). Let f be an element ofAut( C2):
Either f is conjugate to an element ofE; or f is a H�enon automor-

phism.

Proposition 6.3.4 ([127]). Let f be a H�enon automorphism; the central-
izer of f is countable.

Proposition 6.3.3 and Proposition 6.3.4 allow us to establish thefol-
lowing property:

Proposition 6.3.5 ([66]). Let � be an automorphism ofAut( C2): Then
� (H ) = H where

H =
n

f 2 Aut( C2)
�
� f is a H�enon automorphism

o
:

We also have the following: for any f in E, � (f ) is up to conjugacy
in E. But Lamy proved that a non-abelian subgroup whose each element
is conjugate to an element ofE is conjugate either to a subgroup ofA, or
to a subgroup or E. So we will try to \distinguish" A and E.

We set E(1) = [ E; E] =
n

(x; y) 7! (x + P(y); y + � )
�
� � 2 C; P 2 C[y]

o

and
E(2) = [ E(1) ; E(1) ] =

n
(x; y) 7! (x + P(y); y)

�
� P 2 C[y]

o
:

The group E(2) satis�es the following property.

Lemma 6.3.6 ([66]). The group E(2) is a maximal abelian subgroup ofE:
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Proof. Let K � E(2) be an abelian group. Letg = ( g1; g2) be in K . For
any polynomial P and for any t in C let us set f tP = ( x + tP (y); y). We
have

(?) f tP g = gf tP :

If we consider the derivative of (?) with respect to t at t = 0 we obtain

(� )
@g1
@x

P(y) = P(g2); (�� )
@g2
@x

P(y) = 0 :

The equality ( �� ) implies that g2 depends only ony. Thus from (??) we
get: @g1

@x is a function of y, i.e. @g1
@x = R(y) and g1(x; y) = R(y)x + Q(y).

As g is an automorphism, R is a constant � which is non-zero. Then (??)
can be rewritten �P (y) = P(g2). For P � 1 we obtain that � = 1 and
for P(y) = y we haveg2(y) = y. In other words g = ( x + Q(y); y) belongs
to E(2) .

Let G be a group; set

G(0) = G ; G(1) = [G ; G]; : : : ; G(p) = [G (p� 1) ; G(p� 1) ]; : : :

The group G issolvable if there exists an integerk such that G(k ) = id; the
smallest integerk such that G(k ) = id is the length of G. The Lemma 6.3.6
allows us to establish the following statement.

Proposition 6.3.7 ([66]). The group E is maximal among the solvable
subgroups ofAut( C2) of length 3:

Proof. Let K be a solvable group of length 3. Assume thatK � E. The
group K (2) is abelian and containsE(2) . As E(2) is maximal, K (2) = E(2) .
The group K (2) is a normal subgroup ofK so for all f = ( f 1; f 2) 2 K and
g = ( x + P(y); y) 2 K (2) = E(2) we have

(?) f 1(x + P(y); y) = f 1(x; y) + �( P)( f 2(x; y))

(??) f 2(x + P(y); y) = f 2(x; y)

where � : C[y] ! C[y] depends onf . The second equality implies thatf 2 =
f 2(y). The derivative of ( ?) with respect to x implies @f1

@x (x + P(y); y) =
@f1
@x (x; y) thus @f1

@x = R(y) and

f 1(x; y) = R(y)x + Q(y); Q; R 2 C[y]:

As f is an automorphism we havef 1(x; y) = �x + Q(y), � 6= 0. In other
words K = E.

This algebraic characterization of E and the fact that a non-abelian
subgroup whose each element is conjugate to an element ofE is conjugate
either to a subgroup of A or to a subgroup or E (see [127]) allow us to
establish a rigidity property concerning E.
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Proposition 6.3.8 ([66]). Let � be an automorphism ofAut( C2): There
exists a polynomial automorphism of C2 such that � (E) =  E � 1:

Assume that � (E) = E; we can show that � (D) = D and � (T i ) = T i

where

D =
n

(x; y) 7! (�x; �y )
�
� �; � 2 C�

o
;

T1 =
n

(x; y) 7! (x + �; y )
�
� � 2 C

o
; T2 =

n
(x; y) 7! (x; y + � )

�
� � 2 C

o
:

With an argument similar to the one used in x6.2 we obtain the follow-
ing statement.

Proposition 6.3.9 ([66]). Let � be an automorphism ofAut( C2): Then
up to inner conjugacies and up to the action of an automorphism of the
�eld C the group E is pointwise invariant by �:

It is thus not di�cult to check that if E is pointwise invariant, then
� (x; x + y) = ( x; x + y): We conclude using the following fact:Eand (x; x +
y) generate Aut(C2):

6.3.2 Corollaries

Corollary 6.3.10 ([66]). An automorphism � of Aut( C2) is inner if and
only if for any f in Aut( C2) we have

jac � (f ) = jac f

where jac f is the determinant of the jacobian matrix of f:

Proof. There exists an automorphism� of the �eld C and a polynomial
automorphism  such that for any polynomial automorphism f we have
� (f ) = � ( � 1f  ). Hence

jac � (f ) = jac � (f ) = � (jac f );

so jac� (f ) = jac f for any f if and only if � is trivial.

Corollary 6.3.11. An isomorphism of the semi-groupEnd(C2) in itself
is inner up to the action of an automorphism of the �eld C:

Proof. Let � be an isomorphism of the semi-group End(C2) in itself; �
induces an automorphism ofC2. We can assume that, up to the action of
an inner automorphism and up to the action of an automorphism of the
�eld C, the restriction of � to Aut( C2) is trivial (Theorem 6.3.1).
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For any � in C2, let us denote byf � the constant endomorphism ofC2,
equal to � . For any g in End(C2) we havef � g = f � . This equality implies
that � sends constant endomorphisms onto constant endomorphisms; this
de�nes an invertible map � from C2 into itself such that � (f � ) = f � ( � ) .
Since gf � = f g( � ) for any g in End(C2) and any � in C2 we get: � (g) =
�g� � 1. The restriction � jAut( C2 ) is trivial so � is trivial.

6.4 The Cremona group

6.4.1 Description of the automorphisms group of Bir( P2)

Theorem 6.4.1 ([67]). Any automorphism of the Cremona group is the
composition of an inner automorphism and an automorphism ofthe �eld C:

Let us recall the de�nition of a foliation on a compact complex
surface . Let S be a compact complex surface; let (Ui ) be a collection
of open sets which cover S: A foliation F on S is given by a family (� i ) i

of holomorphic vector �elds with isolated zeros de�ned on the U0
i s: The

vector �elds � i satisfy some conditions

on Ui \ U j we have� i = gij � j ; gij 2 O � (Ui \ U j ):

Note that a non trivial vector �eld � on S de�nes such a foliation.
The keypoint of the proof of Theorem 6.4.1 is the following Lemma.

Lemma 6.4.2 ([67]). Let G be an uncountable maximal abelian subgroup
of Bir( P2): There exists a rational vector �eld � such that

f � � = �; 8 f 2 G:

In particular G preserves a foliation.

Proof. The group G is uncountable so there exists an integern such that

Gn =
�

f 2 G
�
� degf = n

	

is uncountable. Then the Zariski's closureGn of Gn in

Bir n =
�

f 2 Bir( P2)
�
� degf � n

	

is an algebraic set and dimGn � 1: Let us consider a curve inGn ; i.e. a
map

� : D ! Gn ; t 7! � (t):

Remark that the elements ofGn are commuting birational maps.
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For each p in P2(C) n Ind � (0) � 1 set

� (p) =
@�(s)

@s

�
�
�
s=0

(� (0) � 1(p)) :

This formula de�nes a rational vector �eld on P2(C) which is non iden-
tically zero. By derivating the equality f � (s)f � 1(p) = � (s)(p) we obtain
f � � = �: Then � is invariant by Gn ; we note that in fact � is invariant
by G:

So take an uncountable maximal abelian subgroup G of Bir(P2) with-
out periodic element and an automorphism� of Bir( P2): Then � (G) is
an uncountable maximal abelian subgroup of Bir(P2) which preserves a
foliation F :

Let F be an holomorphic singular foliation on a compact complex pro-
jective surface S: Such foliations have been classi�ed up to birational equi-
valence by Brunella, McQuillan and Mendes ([37, 136, 137]). Let Bir(S; F )
(resp. Aut(S; F )) be the group of birational (resp. biholomorphic) sym-
metries of F ; i.e. mappings g which send leaf to leaf. For a foliationF of
general type, Bir(S; F ) = Aut(S ; F ) is a �nite group. In [45] the authors
classify those triples (S; F ; g) for which Bir(S ; F ) (or Aut(S ; F )) is in�nite.
The classi�cation leads to �ve classes of foliations listed below:

� F is left invariant by a holomorphic vector �eld;

� F is an elliptic �bration;

� S = T =G is the quotient of a complex 2-torus T by a �nite group
and F is the projection of the stable foliation of some Anosov di�eo-
morphism of T ;

� F is a rational �bration;

� F is a monomial foliation on P1(C) � P1(C) (or on the desingular-
isation of the quotient P1(C) � P1(C) by the involution ( z; w) 7!
(1=z;1=w)).

We prove that as � (G) is uncountable, maximal and abelian without
periodic element,F is a rational �bration 1. In other words � (G) is up to
conjugacy a subgroup of

dJ = PGL 2(C(y)) o PGL2(C):

The groups

dJa =
n

(x; y) 7! (x + a(y); y)
�
� a 2 C(y)

o

1Here a rational �bration is a rational application from P2 (C) into P1 (C) whose �bers
are rational curves.
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and

T =
n

(x; y) 7! (x + �; y + � )
�
� �; � 2 C

o

are uncountable, maximal, abelian subgroups of the Cremona group; more-
over they have no periodic element. So� (dJa) and � (T) are contained
in dJ: After some computations and algebraic considerations we obtain
that, up to conjugacy (by a birational map),

� (dJa) = dJ a and � (T) = T :

As D =
n

(�x; �y )
�
� �; � 2 C�

o
acts by conjugacy on T we establish

that � (D) = D : After conjugating � by an inner automorphism and an
automorphism of the �eld C the groups T and D are pointwise invariant
by �: Finally we show that � preserves (y; x) and

�
1
x ; 1

y

�
; in particular we

use the following identity due to Gizatullin ([100])

(h� )3 = id ; h =
�

x
x � 1

;
x � y
x � 1

�
:

Since Bir(P2) is generated by Aut(P2) = PGL 3(C) and
�

1
x ; 1

y

�
(Theo-

rem 2.1.4) we have after conjugating� by an inner automorphism and an
automorphism of the �eld C: � jBir( P2 ) = id :

We will give another proof of Theorem 6.4.1 in Chapter 7.

6.4.2 Corollaries

We obtain a similar result as Corollary 6.3.11.

Corollary 6.4.3 ([67]). An isomorphism of the semi-group of the rational
maps from P2(C) into itself is inner up to the action of an automorphism
of the �eld C.

We also can prove the following statement.

Corollary 6.4.4 ([67]). Let S be a complex projective surface and let'
be an isomorphism betweenBir(S) and Bir( P2). There exists a birational
map  : S 99KP2(C) and an automorphism of the �eld C such that

' (f ) = � ( f  � 1) 8 f 2 Bir(S) :



Chapter 7

Cremona group and
Zimmer conjecture

7.1 Introduction

In the 80's Zimmer suggests to generalise the works of Margulis on the
linear representations of the lattices of simple, real Lie groups of real rank
strictly greater than 1 ( see [133, 170]) to the non-linear ones. He thus
establishes a program containing several conjectures ([176, 177, 178, 179]);
among them there is the following one.

Conjecture (Zimmer). Let G be a real, simple, connected Lie group
and let � be a lattice of G. If there exists a morphism of in�nite image
from � into the di�eomorphisms group of a compact manifold M, the real
rank of G is bounded by the dimension of M.

There are a lot of results about this conjecture (see for example [95,
173, 96, 38, 39, 140, 155, 90, 42]). In the case of the Cremona group we
have the following statement.

Theorem 7.1.1 ([65]). 1) The image of an embedding of a subgroup of
�nite index of SL3(Z) into Bir( P2) is, up to conjugation, a subgroup of
PGL3(C):

More precisely let � be a subgroup of �nite index ofSL3(Z) and let �
be an embedding of� into Bir( P2). Then � is, up to conjugation, either
the canonical embedding or the involutionu 7! t(u� 1).

2) Let � be a subgroup of �nite index ofSLn (Z) and let � be an embed-
ding of � into the Cremona group. If � has in�nite image, then n is less
or equal to 3.

In the same context Cantat proves the following statement.

91
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Theorem 7.1.2 ([43]). Let � be an in�nite countable subgroup ofBir( P2).
Assume that � has Kazhdan's property1; then up to birational conjugacy �
is a subgroup ofPGL3(C).

The proof uses the tools presented in Chapter 3 and in particular Theo-
rem 3.4.6. Let us give an idea of the proof: since � has Kazhdan property
the image of � by any � : � ! Bir( P2) is a subgroup of Bir(P2) whose
all elements are elliptic. According to Theorem 3.4.6 we have the follow-
ing alternative: either � (�) is conjugate to a subgroup of PGL 3(C), or
� (�) preserves a rational �bration that implies that � has �nite image
(Lemma 7.4.4).

Let � be an automorphism of the �eld C ; we can associate to a bi-
rational map f the birational map � (f ) obtained by the action of � on
the coe�cients of f given in a �xed system of homogeneous coordinates.
Theorem 7.1.1 allows us to give another proof of the following result.

Theorem 7.1.3 ([67]). Let � be an automorphism of the Cremona group.
There exist a birational map  and an automorphism� of the �eld C such
that

� (f ) = � ( f  � 1); 8 f 2 Bir( P2):

The Cremona group has a lot of common points with linear groups
nevertheless we have the following statement.

Proposition 7.1.4 ([52]). The Cremona group cannot be embedded into
GLn (| ) where | is a �eld of characteristic zero.

First let us recall a result of linear algebra due to Birkho�.

Lemma 7.1.5 ([26]). Let | be a �eld of characteristic zero and letA; B; C
be three elements ofGLn (| ) such that [A; B ] = C; [A; C ] = [ B; C ] = id
and Cp = id with p prime. Then p � n:

Proof of Proposition 7.1.4. Assume that there exists an embedding& of
the Cremona group into GLn (| ). For all prime p let us consider in the
a�ne chart z = 1 the group

��
exp

�
�

2i �
p

�
x; y

�
; (x; xy );

�
x; exp

�
2i �
p

�
y
��

:

The images by&of the three generators satisfy Lemma 7.1.5 sop � n ; as
it is possible for every primep we obtain a contradiction.

1Let us recall that G has Kazhdan's property if any continuous a�ne isometric action
of G on a real Hilbert space has a �xed point.
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This Chapter is devoted to the proof of Theorem 7.1.1. Let us de-
scribe the steps of the proof. First of all let us assume to simplify that
� = SL 3(Z). Let � denote an embedding of � into Bir( P2). The group
SL3(Z) contains many Heisenberg groups,i.e. groups having the following
presentation

H = hf; g; h j [f; g ] = h; [f; h ] = [ g; h] = id i :

The key Lemma (Lemma 7.4.3) says if&is an embedding ofH into Bir( P2)
then � (&(h)) = 1. Then either &(h) is an elliptic birational map, or &(h) is
a de Jonqui�eres or Halphen twist (Theorem 3.2.1). Using the well-known
presentation of SL3(Z) (Proposition 7.2.4) we know that the image of any
generator eij of SL3(Z) satis�es this alternative; moreover the relations
satis�ed by the eij 's imply the following alternative

� one of the � (eij ) is a de Jonqui�eres or Halphen twist;

� any � (eij ) is an elliptic birational map.

In the �rst situation � (SL3(Z)) thus preserves a rational or elliptic �bra-
tion that never happen because of the group properties of SL3(Z) (Propo-
sition 7.4.5). In the second situation the �rst step is to prove that the
Heisenberg grouph� (e12); � (e13); � (e23)i is, up to �nite index and up to
conjugacy, a subgroup of Aut(S) where S is eitherP2(C), or a Hirzebuch
surface (x7.3). In both cases we will prove that � (�) is up to conjugacy a
subgroup of Aut(P2) = PGL 3(C) (Lemmas 7.4.6, 7.4.7).

7.2 First Properties

7.2.1 Zimmer conjecture for the group Aut( C2)

Let us recall the following statement that we use in the proof of Theo-
rem 7.1.1.

Theorem 7.2.1 ([47]). Let G be a real Lie group and let� be a lattice ofG.
If there exists embedding of� into the group of polynomial automorphisms
of the plane, thenG is isomorphic either to PSO(1; n) or to PSU(1; n) for
some integern.

Idea of the proof (for details see[47]). The proof of this result uses
the amalgamated product structure of Aut(C2) (Theorem 2.1.2). Let us
recall that the group of a�ne automorphisms is given by

A=
n

(x; y) 7! (a1x+ b1y+ c1; a2x+ b2y+ c2)
�
� ai ; bi ; ci 2 C; a1b2� a2b1 6= 0

o

and the group of elementary automorphisms by

E=
n

(x; y) 7! (�x + P(y); �y + 
 )
�
� �; � 2 C� ; 
 2 C; P 2 C[y]

o
:
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Theorem 7.2.2 ([121, 128]). The groupAut( C2) is the amalgamated prod-
uct of A and E along A\ E.

There exists a tree on which Aut(C2) acts by translation (Bass-Serre
theory, see x2.1) ; the stabilizers of the vertex of the tree are conjugate
either to A or to E. So if a group G can be embedded into Aut(C2), then :

� either G acts on a tree without �xing a vertex;

� or G embeds into eitherA or E.

Using this fact, Cantat and Lamy study the embeddings of Kazhdan
groups (see[63], chapter I or [133], chapter III) having (FA) property and
thus the embeddings of lattices of Lie groups with real rank greater or
equal to 2.

7.2.2 The groups SLn (Z)

Let us recall some properties of the groups SLn (Z) (see [164] for more
details).

For any integer q let us denote by � q : SLn (Z) ! SLn (Z=qZ) the
morphism which sends M onto M moduloq. Let � n (q) be the kernel of � q

and let e� n (q) be the reciprocical image of the diagonal group of SLn (Z=qZ)
by � q ; the � n (q) are normal subgroups of SLn (Z), called congruence
groups .

Theorem 7.2.3 ([10]). Let n � 3 be an integer and let� be a subgroup
of SLn (Z).

If � is of �nite index, there exists an integer q such that � contains a
subgroup� n (q) and is contained in e� n (q).

If � is of in�nite index, then � is central and, in particular, �nite.

Let � ij be the Kronecker matrix 3 � 3 and let us seteij = id + � ij :

Proposition 7.2.4. The group SL3(Z) admits the following presentation :

heij; i 6= j j [eij ; ek` ] =

8
<

:

id if i 6= ` & j 6= k
ei` if i 6= ` & j = k
e� 1

kj if i = ` & j 6= k
; (e12e� 1

21 e12)4 = id i

The eq
ij generate �3(q) and satisfy equalities similar to those veri�ed by

the eij except (e12e� 1
21 e12)4 = id ; we will call them standard generators

of � 3(q). The system of roots ofsl3(C) is of type A2 (see [93]) :
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r3 r2

r1

r6r5

r4

Each standard generator of a �3(q) is an element of the group of one
parameter associated to a rootr i of the system ; the system of roots thus
allows us to �nd most of the relations which appear in the presentation
of SL3(Z). For example r 1 + r 3 = r 2 corresponds to [e12; e23] = e13, the
relation r 2 + r 4 = r 3 to [e13; e21] = e� 1

23 and the fact that r 1 + r 2 is not a
root to [e12; e13] = id.

7.2.3 Heisenberg groups

De�nition 7.2.5. Let k be an integer. We callk-Heisenberg group a
group with the presentation :

H k = hf; g; h j [f ; h] = [g ; h] = id ; [f ; g] = h k i :

By convention H = H 1 ; it is a Heisenberg group.

Let us remark that the Heisenberg group generated by f, g and hk is a
subgroup of indexk of H k . We call f, g and h the standard generators
of H k .

Remark 7.2.6. Each eq2

ij can be written as the commutator of twoeq
k` with

whom it commutes. The groupSL3(Z) thus contains a lot of k-Heisenberg
groups ; for exampleheq

12; eq
13; eq

23 i is one (for k = q).

7.3 Representations of Heisenberg groups

As we said the groups SLn (Z) contain Heisenberg groups, we thus naturally
study the representations of those ones in the automorphisms groups of
Hirzebruch surfaces and ofP2(C). Let us begin with some de�nitions and
properties.

De�nition 7.3.1. Let S be a compact complex surface. The birational map
f : S 99KS is an elliptic birational map if there exist a birational map
� : S 99KeS and an integer n > 0 such that �f n � � 1 is an automorphism
of eS isotopic to the identity (i.e. �f n � � 1 2 Aut 0(S)).

Two birational maps f and g on S are simultaneously elliptic if the
pair (�; eS) is common to f and g.
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Remark 7.3.2. Let C1 and C2 be two irreducible homologous curves of
negative auto-intersection thenC1 and C2 coincide. Thus an automor-
phism f of S isotopic to the identity �xes each curve of negative self-
intersection; for any sequence of blow-downs from S to a minimal model
eS of S; the element f  � 1 is an automorphism ofeS isotopic to the identity.

Lemma 7.3.3 ([65]). Let f and g be two birational elliptic maps on a
surfaceS. Assume that f and g commute; thenf and g are simultaneously
elliptic.

Proof. By hypothesis there exist a surfaceeS, a birational map � : S 99KeS
and an integer n such that � � 1f n � is an automorphism of eS isotopic to
the identity. Let us work on eS ; to simplify we will still denote by f (resp.
g) the automorphism � � 1f n � (resp. � � 1g� ).

First let us prove that there exists a birational map � : Y 99KeS such
that � � 1f ` � is an automorphism of Y isotopic to the identity for some
integer ` and that � � 1g� is algebraically stable. Let us denote byN (g)
the minimal number of blow-ups needed to makeg algebraically stable.

If N (g) is zero, then we can take� = id.
Assume that the result is true for the mapsf and g satisfying N (g) � j ;

let us consider the pair (ef ; eg) and assume that it satis�es the assumption
of the statement and that N (eg) = j + 1. As eg is not algebraically stable,
there exists a curveV in Exc eg and an integerq such that egq(V ) is a point
of indeterminacy p of eg. As ef and eg commute, ef k �xes the irreducible
components of Indeg for some integerk. Let us consider� the blow-up of p;
this point being �xed by ef k , on the one hand� � 1 ef k � is an automorphism
and on the other hand N (� � 1eg� ) = j . Then, by induction, there exists
� : Y 99KeS and ` such that � � 1 ef ` � is an automorphism isotopic to the
identity and that � � 1eg� is algebraically stable.

Let us set f = � � 1f ` � and g = � � 1g� . Using [73], Lemma 4:1,
we see that the mapsf and g are simultaneously elliptic. Indeed the
�rst step to get an automorphism from g is to consider the blow-down
"1 of a curve of Excg� 1 ; as the curves contracted byg� 1 are of nega-
tive self-intersection and asf is isotopic to the identity, these curves are
�xed by f so by "1f " � 1

1 . The i -th step is to repeat the �rst one with
" i � 1 : : : "1f " � 1

1 : : : " � 1
i � 1 and " i � 1 : : : "1g"� 1

1 : : : " � 1
i � 1, we then obtain the re-

sult. According to [73] the process ends and a power of" � 1g" is isotopic
to the identity.

We have a similar result for the standard generators of ak-Heisenberg
group.

Proposition 7.3.4 ([65]). Let & be a representation ofH k into the Cre-
mona group. Assume that each standard generator of&(H k ) is elliptic.
Then &(f) , &(g) and &(h) are simultaneously elliptic.
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Proof. According to Lemma 7.3.3 the maps&(f) and &(h) are simultane-
ously elliptic. Since g and h commute, Exc&(g) and Ind &(g) are invariant
by &(h) : The relation [f ; g] = h k implies that Exc &(g) and Ind &(g) are
invariant by &(f) : Using the idea of the proof of Lemma 7.3.3 and ([73],
Lemma 4:1), we obtain the result.

In the sequel we are interested in the representations ofH k in the au-
tomorphisms groups of minimal surfaces which areP1(C) � P1(C), P2(C)
and the Hirzebruch surfacesFm . In an a�ne chart ( x; y) of such a sur-
face S, iff is an element of Bir(S), we will denotef by its two components
(f 1(x; y); f 2(x; y)). Let us recall that in some good a�ne charts we have

Aut( P1(C) � P1(C)) = (PGL 2(C) � PGL2(C)) o (y; x)

and

Aut( Fm ) =
n �

�x + P(y)
(cy + d)m ;

ay + b
cy + d

� �
�
�

�
a b
c d

�
2 PGL2(C);

� 2 C� ; P 2 C[y]; degP � m
o

:
(7.3.1)

Lemma 7.3.5 ([65]). Let & be a morphism from H k into Aut( P1(C) �
P1(C)) . The morphism & is not an embedding.

Proof. We can assume that f, g and h �xe the two standard �brations
(if it is not the case we can considerH 2k � H k ), i.e. im & is contained
in PGL 2(C) � PGL2(C). For j = 1 ; 2 let us denote by � j the j -th pro-
jection. The image of &(H 2k ) by � j is a solvable subgroup of PGL2(C);
as� j (&(hk )) is a commutator, this homography is conjugate to the transla-
tion z + � j . Assume that � j is nonzero ; then � j (&(f)) and � j (&(g))
are also some translations (they commute with� j (&(hk ))). The relation
[� j (&(f)) ; � j (&(g))] = � j (&(hk )) thus implies that � j is zero : contradiction.
So� j is zero and the image of h2k by &is trivial : &is not an embedding.

Concerning the morphisms fromH k to Aut( Fm ); m � 1; we obtain a
di�erent statement. Let us note that we can see Aut(C2) as a subgroup
of Bir( P2); indeed any automorphism (f 1(x; y); f 2(x; y)) of C2 can be ex-
tended to a birational map:

(zn f 1(x=z; y=z) : zn f 2(x=z; y=z) : zn ) where n = max(deg f 1; degf 2):

Lemma 7.3.6 ([65]). Let & be a morphism from H k into Aut( Fm ) with
m � 1. Then &(H k ) is birationally conjugate to a subgroup ofE: Moreover,
&(h2k ) can be written (x + P(y); y) where P denotes a polynomial.
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Remark 7.3.7. The abelian subgroups ofPGL2(C) are, up to conjugation,
some subgroups ofC, C� or the group of order 4 generated by� y and 1

y :

Proof. Let us consider the projection� from Aut( Fm ) into PGL 2(C). We

can assume that� (&(H k )) is not conjugate to
n

y; � y; 1
y ; � 1

y

o
(if it is the

case let us considerH 2k ). Therefore � (&(H k )) is, up to conjugation, a
subgroup of the group of the a�ne maps of the line; so &(H k ) is, up to
conjugation, a subgroup ofE (see (7.3.1)). The relations satis�ed by the
generators imply that &(h2k ) can be written (x + P(y); y).

Lemma 7.3.8 ([65]). Let &be an embedding ofH k into PGL3(C). Up to
linear conjugation, we have

&(f) = ( x + �y; y + � ); &(g) = ( x + 
y; y + � ) and &(hk ) = ( x + k; y)

with �� � �
 = k.

Proof. The Zariski closure &(H k ) of &(H k ) is an algebraic unipotent sub-
group of PGL3(C) ; as & is an embedding, the Lie algebra of&(H k ) is
isomorphic to:

h =

8
<

:

2

4
0 � �
0 0 

0 0 0

3

5
�
�
� �; �; 
 2 C

9
=

;
:

Let us denote by � the canonical projection from SL3(C) into PGL 3(C).
The Lie algebra of � � 1(&(H k )) is, up to conjugation, equal to h. The
exponential map sendsh in the group H of the upper triangular matrices
which is a connected algebraic group. Therefore the identity component
of � � 1(&(H k )) coincides with H. Any element g of � � 1(&(H k )) acts by
conjugation on H so belongs to the group generated by H andj :id where
j 3 = id : Since � (j :id) is trivial, the restriction of � to H is surjective on
&(H k ) ; but it is injective so it is an isomorphism. Therefore &can be lifted
in a representation e&from H k into H :

H k
e& //

& ""EE
EE

EE
EE

H

� j H

��
&(H k )

As e&(hk ) can be written as a commutator, it is unipotent. The relations
satis�ed by the generators imply that we have up to conjugation in SL3(C)

e&(hk ) = ( x + k; y); e&(f) = ( x + �y; y + � ) and e&(g) = ( x + 
y; y + � )

with �� � �
 = k.
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7.4 Quasi-rigidity of SL3(Z)

7.4.1 Dynamic of the image of an Heisenberg group

De�nition 7.4.1. Let G be a �nitely generated group, let
�

a1; : : : ; an
	

be a part which generatesG and let f be an element ofG.

� The length of f , denoted byjf j, is the smallest integerk such that
there exists a sequence(s1; : : : ; sk ), si 2

�
a1; : : : ; an ; a� 1

1 ; : : : ; a� 1
n

	
,

with f = s1 : : : sk .

� The quantity lim
k ! + 1

jf k j
k

is the stable length of f (see[62]).

� An element f of G is distorted if it is of in�nite order and if its
stable length is zero. This notion is invariant by conjugation.

Lemma 7.4.2 ([65]). Let H k = hf; g; hi be a k-Heisenberg group. The
element hk is distorted. In particular the standard generators of SLn (Z)
are distorded.

Proof. As [f; h] = [g ; h] = id, we have hknm = [f n ; gm ] for any pair (n; m)
of integers. For n = m we obtain hkn 2

= [f n ; gn ] ; therefore jhkn 2
j � 4n.

Each standard generatoreij of SLn (Z) can be written as follows eij =
[eik ; ekj ], moreover we have [eij ; eik ] = [ eij ; ekj ] = id (Remark 7.2.6).

Lemma 7.4.3 ([65]). Let G be a �nitely generated group and let�
a1; : : : ; an

	
be a set which generatesG. Let f be an element ofG and

let & be an embedding ofG into Bir( P2). There exists a constantm � 0
such that

1 � � (&(f )) � exp
�

m
jf n j
n

�
:

In particular, if f is distorted, the stable length off is zero and the �rst
dynamical degree of&(f ) is 1.

Proof. The inequalities � (&(f ))n � deg&(f )n � maxi (deg&(ai )) j f n j imply

0 � log � (&(f )) �
jf n j
n

log(max
i

(deg&(ai ))) :

If f is distorted, the quantity lim
k !1

jf k j
k

is zero and the �rst dynamical

degree of&(f ) is 1.
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7.4.2 Notations

In the sequel,� will denote an embedding of SL3(Z) into Bir( P2). Lemmas
7.4.2 and 7.4.3 imply that � (� (eij )) = 1. Thanks to Proposition 7.2.4 and
Theorem 3.2.1, we have :

� either one of the � (eij ) preserves a unique �bration, rational or el-
liptic;

� or each standard generator of �3(q) is an elliptic birational map.

We will study these two possibilities.

7.4.3 Invariant �bration

Lemma 7.4.4 ([65]). Let � be a �nitely generated group with the Kazh-
dan's property (T). Let � be a morphism from � to PGL2(C(y)) ( resp.
PGL2(C)) . Then the image of� is �nite.

Proof. Let us denote by
 i the generators of � and let
�

ai (y) bi (y)
ci (y) di (y)

�
be

their image by � . A �nitely generated Q-group is isomorphic to a sub�eld
of C so Q(ai (y); bi (y); ci (y); di (y)) is isomorphic to a sub�eld of C and we
can assume that im� � PGL2(C) = Isom( H3). As � has property (T),
each continuous action of � by isometries on a real or complex hyperbolic
space has a �xed point ; the image of� is thus, up to conjugacy, a sub-
group of SO3(R). A result of Zimmer implies that the image of � is �nite
(see [63]).

Proposition 7.4.5 ([65]). Let � be a morphism from a congruence sub-
group � 3(q) of SL3(Z) into Bir( P2). If one of the � (eq

ij ) preserves a unique
�bration, then the image of � is �nite.

Proof. Let us denote by eeq
ij the image of eq

ij by � ; Remark 7.2.6 implies
that the di�erent generators play a similar role; we can thus assume, with-
out loss of generality, that eeq

12 preserves a unique �bration F :

The relations imply that F is invariant by all the eeq2

ij 's. Indeed as
eeq

12 commutes with eeq
13 and eeq

32, the elementseeq
13 and eeq

32 preserveF (it's

the unicity) ; then the relation [ eeq
12; eeq

23] = eeq2

13, which can also be written

eeq
23eeq

12ee� q
23 = eeq2

13ee12, implies that eeq
23 preservesF . Thanks to [eeq

12; eeq
31] =

ee� q2

32 we obtain that F is invariant by eeq
31. Finally as [eeq

23; eeq
31] = eeq2

21; the

element eeq2

21 preservesF .

Then, for each eeq2

ij , there exists hij in PGL 2(C) and

F : P2(C) ! Aut( P1(C))
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de�ning F in such a way that F � eeq2

ij = hij � F . Let us consider the
morphism &given by

� 3(q2) ! PGL2(C); eeq2

ij 7! hij :

As � 3(q2) has Kazhdan's property (T) the group � = ker &is of �nite index
(Lemma 7.4.4) so it also has Kazhdan's property (T). If F is rational, we
can assume thatF = ( y = cte) where y is a coordinate in an a�ne chart
of P2(C) ; as the group of birational maps which preserve the �bration
y = cte can be identi�ed with PGL 2(C(y)) o PGL2(C), the image of �
by � is contained in PGL2(C(y)). In this case � (�) is thus �nite (Lemma
7.4.4) which implies that � (� 3(q2)) and � (� 3(q)) are also �nite. The �-
bration F cannot be elliptic ; indeed the group of birational maps which
preserve pointwise an elliptic �bration is metabelian and a subgroup of
� 3(q2) cannot be metabelian.

7.4.4 Factorisation in an automorphism group

Assume that every standard generator of SL3(Z) is elliptic; in particular
every standard generator of SL3(Z) is isotopic to the identity. According
to Remark 7.3.2, Proposition 7.3.4, Lemmas 7.4.2 and 7.4.3, the images of
en

12, en
13 and en

23 by � are, for somen, automorphisms of a minimal surface
S. First of all let us consider the case S =P2(C).

Lemma 7.4.6 ([65]). Let � be an embedding ofSL3(Z) into Bir( P2). If
� (en

12), � (en
13) and � (en

23) belongs, for some integern, to PGL3(C), then
� (� 3(n2)) is a subgroup ofPGL3(C).

Idea of the proof. According to Lemma 7.3.8 we have normal forms for
� (en

12), � (en
13) and � (en

23) up to conjugation. A computation gives the
following alternative

� either all � (en 2

ij ) are polynomial automorphisms ofC2;

� of all � (en 2

ij ) are in PGL3(C).

The �rst case cannot occur (Theorem 7.2.1).

The following statement deals with the case of Hirzebruch surfaces.

Lemma 7.4.7 ([65]). Let � be a morphism fromSL3(Z) to Bir( P2). As-
sume that� (en

12), � (en
13) and � (en

23) are, for some integern, simultaneously
conjugate to some elements ofAut( Fm ) with m � 1 ; then the image of�
is either �nite, or contained, up to conjugation, in PGL3(C).
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7.4.5 Proof of Theorem 7.1.1 1)

According to Proposition 7.4.5 any standard generator of SL3(Z) is vir-
tually isotopic to the identity. The maps � (en

12), � (en
13) and � (en

23) are,
for some integern, conjugate to automorphisms of a minimal surface S
(Proposition 7.3.4); we don't have to consider the case S =P1(C) � P1(C)
(Lemma 7.3.5). We �nally obtain that � (� 3(n2)) is, up to conjugation, a
subgroup of PGL3(C) (Lemmas 7.4.6 and 7.4.7).

The restriction of � to � 3(n2) can be extended to an endomorphism of
Lie group of PGL3(C) (see [164]); as PGL3(C) is simple, this extension
is injective and thus surjective. According to [71], chapter IV, the auto-
morphisms of PGL3(C) are obtained from inner automorphisms, automor-
phisms of the �eld C and the involution u 7! t(u� 1) ; since automorphisms
of the �eld C don't act on � 3(n2), we can assume, up to linear conjugation,
that the restriction of � to � 3(n2) coincides, up to conjugation, with the
identity or the involution u 7! t(u� 1).

Let f be an element of� (SL3(Z)) n � (� 3(n2)) which contracts at least
one curve C = Exc f . The group � 3(n2) is normal in � ; therefore the
curve C is invariant by � (� 3(n2)) and so by � (� 3(n2)) = PGL 3(C) (where
the closure is the Zariski closure) which is impossible. Sof belongs
to PGL 3(C) and � (SL3(Z)) is contained in PGL3(C):

7.4.6 Proof of Theorem 7.1.1 2)

Theorem 7.4.8 ([65]). Each morphism from a subgroup of �nite index
of SL4(Z) in the Cremona group is of �nite image.

Proof. Let � be a subgroup of �nite index of SL 4(Z) and let � be a mor-
phism from � into Bir( P2). To simplify we will assume that � = SL 4(Z).
Let us denote by E ij the images of the standard generators of SL4(Z)
by � . The morphism � induces a faithful representation e� from SL3(Z)
into Bir( P2) :

SL4(Z) �
�

SL3(Z) 0
0 1

�
! Bir( P2):

According to the �rst assertion of Theorem 7.1.1, the map e� is, up to
conjugation, either the identity or the involution u 7! t(u� 1).

Let us begin with the �rst case. The element E34 commutes with E31

and E32 so � (E14) commutes with (x; y; ax + by + z) where a and b are
two complex numbers and Exc� (E34) is invariant by ( x; y; ax + by + z).
Moreover E34 commutes with E12 and E21, in other words with the follo-
wing SL2(Z):

SL4(Z) �

2

4
SL2(Z) 0 0

0 1 0
0 0 1

3

5 ! Bir( P2):
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But the action of SL2(Z) on C2 has no invariant curve; the curves con-
tracted by � (E34) are contained in the line at in�nity. The image of this
one by (x; y; ax + by+ z) intersects C2; so Exc� (E34) is empty and � (E34)
belongs to PGL3(C). With a similar argument we show that � (E43) be-
longs to PGL3(C). The relations thus imply that � (� 4(q)) is in PGL 3(C) ;
so the image of� is �nite.

We can use a similar idea whene� is the involution u 7! t(u� 1).

Conclusion of the proof of Theorem 7.1.1.Let n be an integer greater or
equal to 4 and let � be a subgroup of �nite index of SL n (Z). Let � be
a morphism from � to Bir( P2) ; let us denote by � n (q) the congruence
subgroup contained in � (Theorem 7.2.3). The morphism � induces a
representation from � 4(q) to Bir( P2); according to Theorem 7.4.8 its kernel
is �nite, so ker � is �nite.

7.5 Automorphisms and endomorphisms of
the Cremona group

We will prove Theorem 7.1.3. To do it we will use that (Theorem 2.1.4)

Bir( P2) = hAut( P2) = PGL 3(C);
�

1
x

;
1
y

�
i :

Lemma 7.5.1 ([65]). Let � be an automorphism of the Cremona group.
If � jSL3 (Z) is trivial, then, up to the action of an automorphism of the
�eld C, � jPGL 3 (C) is trivial.

Proof. Let us denote by H the group of upper triangular matrices :

H =

8
<

:

2

4
1 a b
0 1 c
0 0 1

3

5
�
� a; b; c2 C

9
=

;
:

The groups H and SL3(Z) generate PGL3(C) so PGL3(C) is invariant by �
if and only if � (H) = H. Let us set :

f b(x; y) = � (x + b; y); ga(x; y) = � (x + ay; y) and hc(x; y) = � (x; y + c):

The birational map f b (resp. hc) commutes with (x +1 ; y) and (x; y +1) so
f b (resp. hc) can be written as (x + � (b); y+ � (b)) (resp. (x + 
 (c); y+ � (c)))
where � and � (resp. 
 and � ) are two additive morphisms; asga commute
with ( x + y; y) and (x + 1 ; y) we have: ga = ( x + Aa(y); y). The equality

(x + ay; y)(x; y + c)(x + ay; y) � 1(x; y + c) � 1 = ( x + ac; y)
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implies that, for any complex numbers a and c, we have: gahc = f achcga .
Thereforef b = ( x+ � (b); y), ga = ( x+ � (a)y+ � (a); y) and � (a)� (c) = � (ac).
In particular � (H) is contained in H. Since � (a)� (c) = � (ac) we have
� = � = � (because� (1) = � (1) = � (1) = 1); let us note that this equality
also implies that � is multiplicative.

Let T denote the group of translations in C2 ; each element of T can
be written

(x + a; y)(x; y + b):

As f b, resp. hc is of the type (x + � (b); y), resp. (x + � (c); y + � (c)), the
image of T by � is a subgroup of T. The group of translations is a maximal
abelian subgroup of Bir(P2), so does� (T) and the inclusion � (T) � T is
an equality. The map � is thus surjective and � (H) = H. So � induces
an automorphism of PGL3(C) trivial on SL 3(Z). But the automorphisms
of PGL3(C) are generated by inner automorphisms, automorphisms of the
�eld C and the involution u 7! t(u� 1) (see [71]). Then up to conjugation
and up to the action of an automorphism of the �eld C, � jPGL 3 (C) is trivial
(the involution u 7! t(u� 1) on SL3(Z) is not the restriction of an inner
automorphism).

Corollary 7.5.2 ([65]). Let � be an automorphism of the Cremona group.
If � jSL3 (Z) is the involution u 7! t(u� 1) then also � jPGL 3 (C) .

Proof. Let us denote by  the composition of � jSL3 (Z) with the restriction
C of the involution u 7! t(u� 1) to SL3(Z). The morphism  can be ex-
tended to a morphism e from PGL 3(C) into Bir( P2) by e = � jPGL 3 (C) � C.
The kernel of e contains SL3(Z) ; as the group PGL3(C) is simple, e is
trivial.

Lemma 7.5.3 ([65]). Let � be an automorphism of the Cremona group
such that � jPGL 3 (C) is trivial or is the involution u 7! t(u� 1). There exist

a, b two nonzero complex numbers such that� (� ) =
�

a
x ; b

y

�
where � is the

involution
�

1
x ; 1

y

�
.

Proof. Assume that � jPGL 3 (C) is trivial. The map � (� ) can be writ-

ten
�

F
x ; G

y

�
where F and G are rational. The equality � (�x; �y ) =

(� � 1x; � � 1y)� implies (F; G)( �x; �y ) = ( F; G) ; as this equality is true
for any pair ( �; � ) of nonzero complex numbers, the functionsF and G
are constant.

The involution u 7! t(u� 1) preserves the diagonal group; so� jPGL 3 (C)

coincides with u 7! t(u� 1).
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Proof of Theorem 7.1.3. Theorem 7.1.1, Corollary 7.5.2 and Lemma 7.5.1
allow us to assume that up to conjugation and up to the action of an
automorphism of the �eld C, � jPGL 3 (C) is trivial or is the involution u 7!
t(u� 1). Assume we are in the last case and let us seth = ( x; x � y; x � z) ;
the map (h� )3 is trivial ( see [99]). But � (h) = ( x + y + z; � y; � z) and

� (� ) =
�

a
x ; b

y ; 1
z

�
(Lemma 7.5.3) so � (h� )3 6= id: contradiction. We

thus can assume that� jPGL 3 (C) is trivial ; the equality ( h� )3 = id implies
� (� ) = � and Theorem 2.1.4 allows us to conclude.

Using the same type of arguments we can describe the endomorphisms
of the Cremona group.

Theorem 7.5.4 ([68]). Let � be a non-trivial endomorphism ofBir( P2).
There exists an embedding� of the �eld C into itself and a birational map  
of P2(C) such that

� (f ) = � ( f  � 1); 8 f 2 Bir( P2):

This allows us to state the following corollary.

Corollary 7.5.5 ([68]). The Cremona group is hop�an: any surjective
endomorphism ofBir( P2) is an automorphism.



Chapter 8

Centralizers in the
Cremona group

8.1 Introduction

The description of the centralizers of the discrete dynamical systems is an
important problem in real and complex dynamic. Julia ([120, 119]) and
then Ritt ([156]) show that the set

Cent(f; Rat P1) =
�

 : P1 ! P1
�
� f  =  f

	

of rational functions commuting with a �xed rational function f is in gene-
ral f N

0 =
�

f n
0

�
� n 2 N

	
for some f 0 in Cent( f; Rat P1) except in some

special cases (up to conjugacyz 7! zk , Tchebychev polynomials, Latt�es
examples...) In the 60's Smale asks if the centralizer of a generic di�eo-
morphism f : M ! M of a compact manifold is trivial, i.e. if

Cent(f; Di� 1 (M)) =
�

g 2 Di� 1 (M)
�
� f  =  f

	

coincides with f Z =
�

f n
�
� n 2 Z

	
. Several mathematicians have worked

on this problem, for example Bonatti, Crovisier, Fisher, Palis, Wilkinson,
Yoccoz ([125, 35, 88, 89, 147, 148, 149]).

Let us precise some of these works. In [125] Kopell proves the existence
of a dense open subset 
 of Di� 1 (S1) having the following property: the
centralizer of any element of 
 is trivial.

Let f be a Cr -di�eomorphism of a compact manifold M without boun-
dary. A point p of M is non-wandering if for any neighborhood U of
p and for any integer n0 > 0 there exists an integern > n 0 such that
f n U \ U 6= ; . The set of such points is denoted by 
(f ), it is a closed
invariant set; 
( f ) is hyperbolic if

106
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� the tangent bundle of M restricted to 
( f ) can be written as a con-
tinuous direct sum of two subbundles T
( f ) M = E s � E u which are
invariant by the di�erential D f of f ;

� there exists a riemannian metric on M and a constant 0< � < 1
such that for any p 2 
( f ), v 2 E s

p , w 2 E u
p

jjDf pvjj � � jj vjj ; jjDf � 1
p wjj � � jjwjj :

In this case the sets

Ws(p) =
�

z 2 M
�
� d(f n (p); f n (z)) ! 0 asn ! 1

	

and
Wu (p) =

�
z 2 M

�
� d(f � n (p); f � n (z)) ! 0 asn ! 1

	

are some immersed submanifolds of M calledstable and unstable mani-
folds of p 2 
( f ). We say that f satis�es axiom A if 
( f ) is hyperbolic
and if 
( f ) coincides with the closure of periodic points off (see[163]). Fi-
nally we impose a\strong" transversality condition : for any p 2 
( f )
the stable Ws(p) and unstable Wu (p) manifolds are transverse. In [147]
Palis proves that the set of di�eomorphisms of M satisfying axiom A and
the strong transversality condition contains a dense open subset � such
that: the centralizer of any f in � is trivial. Anderson shows a similar
result for the Morse-Smale di�eomorphisms ([5]).

In the study of the elements of the group Di�( C; 0) of the germs of holo-
morphic di�eomorphism at the origin of C, the description of the centrali-
zers is very important. Ecalle proves that if f 2 Di�( C; 0) is tangent to
the identity, then, except for some exceptional cases, its centralizer is af Z

0
(see [84, 85]); it allows for example to describe the solvable non abelian
subgroups of Di�( C; 0) (see [56]). Conversely Perez-Marco gets the ex-
istence of uncountable, non linearizable abelian subgroups of Di�(C; 0)
related to some di�cult questions of small divisors ([154]).

In the context of polynomial automorphisms of the plane, Lamy ob-
tains that the centralizer of a H�enon automorphism is almost trivial. Mor e
precisely we have the following statement: letf be a polynomial automor-
phism of C2; then

� either f is conjugate to an element of the type

(�x + P(y); �y + 
 ); P 2 C[y]; �; �; 
 2 C; �� 6= 0

and its centralizer is uncountable,

� or f is a H�enon automorphism  g 1 : : : gn  � 1 where

 2 Aut( C2); gi = ( y; Pi (y) � � i x); Pi 2 C[y]; degPi � 2; � i 2 C�

and its centralizer is isomorphic to Z o Z =pZ (see [127, Proposi-
tion 4.8]).



108 Julie D�eserti

We will not give the proof of Lamy but will give a \related\ result due to
Cantat (Corollary 8.2.4)

Let us also mention the recent work [75] of Dinh and Sibony.

8.2 Dynamics and centralizer of hyperbolic
di�eomorphisms

Let S be a complex surface and letf : S ! S be a holomorphic map. Letq
be a periodic point of period k for f , i.e. f k (q) = q and f ` (q) 6= q for all
1 � ` � k � 1. Let � u (q) and � s(q) be the eigenvalues of Df (q) . We say
that f is hyperbolic if

j� s(q)j < 1 < j� u (q)j:

Let us denote by Pk (f ) the set hyperbolic periodic points of period k
of f .

Let us considerq 2 Pk (f ); locally around q the map f is well de�ned.
We can linearizef k . The local stable manifold Ws

loc (q) and local un-
stable manifold Wu

loc (q) of f k in q are the image by the linearizing map
of the eigenvectors of Df k

q . To simplify we can assume that up to con-

jugation Df k
q is given by

�
� 0
0 �

�
with j� j < 1 < j� j; there exists a

holomorphic di�eomorphism � : (U; q) ! (C2; 0) where U is a neighbor-

hood of q such that �f k � � 1 =
�

� 0
0 �

�
. Then Ws

loc (q) = � � 1(y = 0)

and Wu
loc (q) = � � 1(x = 0):

W s
loc (q)

W u
loc (q)

In the sequel, to simplify, we will denote f instead of f k .

Lemma 8.2.1. There exist entire curves� s
q ; � u

q : C ! S such that

� � u
q (0) = � s

q(0) = q;

� the global stable and global unstable manifolds of f in q are
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de�ned by

Ws(q) =
[

n> 0

f n (W s
loc (q)) ; Wu (q) =

[

n> 0

f n (W u
loc (q)) :

� f (� u
q (z)) = � u

q (� u (z)) , f (� s
q(z)) = � s

q(� s(z)) for all z 2 C;

� if � u
q : C ! S (resp. � s

q : C ! S) satis�es the �rst three proper-
ties, then � u

q (z) = � u
q (�z ) ( resp. � s

q(z) = � s
q(� 0z)) for some � 2 C�

(resp. � 0 2 C� ).

Proof. As we just see there exists a holomorphic di�eomorphism
� : (U; q) ! D where U is a neighborhood ofq and D a small disk cen-

tered at the origin such that �f k � � 1 =
�

� 0
0 �

�
. Moreover Wu

loc (q) =

� � 1(x = 0) and W s
loc (q) = � � 1(y = 0). Let us extend � . Let z be a point

which does not belong toD; there exist an integer m such that z=� m be-
longs to D. We then set � u

q (z) = f m
�
� � 1

�
z

� m

��
. Let us note that if z

� m

and z
� k both belong to D we have

f m
�

� � 1
� z

� m

��
= f k

�
� � 1

� z
� k

��

and � s
q(z) is well-de�ned. By construction we get

� � u
q (0) = � s

q(0) = q;

� Ws(q) =
[

n> 0

f n (W s
loc (q)), W u (q) =

[

n> 0

f n (W u
loc (q)) :

� f (� u
q (z)) = � u

q (� u (z)), f (� s
q(z)) = � s

q(� s(z)) for all z 2 C.

The map � s
q is the analytic extension of � � 1

jy=0 . Let � be a subset

of
�

y = 0
	

containing 0. Set q = � s
q(1). Let � s

q : � ! Ws
loc (q) be a

non-constant map such that

� � s
q(0) = q,

� � s
q(�z ) = f (� s

q(z)) for any z in � such that �z belongs to �.

Working with � s
q � (z 7! �z ) for some good choice of� instead of � s

q we
can assume that� s

q(1) = q. Since

� s
q(0) = � s

q(0); � s
q(1) = � s

q(1); � s
q

�
1

� n

�
= � s

q

�
1

� n

�
8 n 2 Z

we have� s
q = � s

q .
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Let  be an automorphism of S which commutes withf . The map  
permutes the elements of Pk (f ). If P k (f ) is �nite, of cardinal Nk > 0, the
map  N k ! �xes any element of Pk (f ). The stable and unstable manifolds
of the points q of Pk (f ) are also invariant under the action of  . When
the union of Wu (q) and Ws(q) is Zariski dense in S, then the restrictions
of  to W u

loc (q) and Ws
loc (q) completely determine the map  : S ! S.

Let us denote by Ak the subgroup of Cent(f; Aut(S)) which contains
the automorphisms of S �xing any of the Nk points of Pk (f ). Then  
preserves Wu (q) and Ws(q). We thus can de�ne the morphism

� : Ak ! C� � C� ;  7! � ( ) = ( � s( ); � u ( ))

such that

8 z 2 C; � s
q(� s( )z) =  (� s

q(z)) and � u
q (� u ( )z) =  (� u

q (z)) :

When the union of Ws(q) and Wu (q) is Zariski dense, this morphism is
injective. In particular Ak is abelian and Cent(f; Aut(S)) contains an
abelian subgroup of �nite index with index � Nk !.

Lemma 8.2.2 ([43]). The subset� of C � C de�ned by

� =
�

(x; y) 2 C � C
�
� � u

q (x) = � s
q(y)

	

is a discrete subset ofC � C.
The set � intersects f 0g � C (resp. C � f 0g) only at (0; 0).

Proof. Let (x; y) be an element of � and let m be the point of S de�ned
by m = � s

q(x) = � u
q (y). In a su�ciently small neighborhood of m, the

connected components of Ws(q) and Wu (q) which contain m are two dis-
tinct complex submanifolds and so intersect in a �nite number of points.
Therefore there exist a neighborhoodU of x and a neighborhoodV of y
such that � s

q(U) \ � u
q (V) = f mg. The point ( x; y) is thus the unique point

of � in U � V so � is discrete.
Since� u

q and � s
q are injective, we have the second assertion.

Proposition 8.2.3 ([43]). Let f be a holomorphic di�eomorphism of a
connected complex surfaceS. Assume that there exists an integerk such
that

� the setPk (f ) is �nite and non empty;

� for at least one point q in Pk (f ) we have#(W s(q) \ Wu (q)) � 2.

Then the cyclic group generated byf is of �nite index in the group of
holomorphic di�eomorphisms of S which commute with f .



Chapter 8. Centralizers in the Cremona group 111

Proof. Let us take the notations introduced previously and let us setA :=
� (Ak ). Since #(W s(q) \ Wu (q)) � 2, the manifolds Ws(q) and Wu (q)
intersect in an in�nite number of points and there exists a neighborhoodU
of q such that any holomorphic function on U which vanishes onU \ Wu (q)
vanishes everywhere. The morphism� is thus injective and � is a discrete
and in�nite subset of C � C invariant under the diagonal action of A.

Let us show that A is discrete. Let A be the closure ofA in C� � C� .
Since � is discrete, � is A-invariant. Let us assume that A is not dis-
crete; then A contains a 1-parameter non-trivial subgroup of the type
t 7! (etu ; etv ). Since � is discrete, one of the following property holds:

� � = f (0; 0)g,

� u = 0 and � � C � f 0g,

� v = 0 and � � f 0g � C.

But according to Lemma 8.2.2 none of this possibilities hold. SoA doesn't
contain a 1-parameter non-trivial subgroup andA is discrete. In particular
there is a �nite index abelian free subgroup A0 of A such that the rank
of A0 is less or equal to 2. Sincef is an element of in�nite order of
Cent(f; Aut(S)), the group hf k i is a free subgroup of rank 1 ofAk so the
lower bound of the rank of A0 is 1 and if this lower bound is reached
then hf i is of �nite index in Cent( f; Aut(S)). Let us consider

exp: C � C ! C� � C� ;

then exp� 1(� \ (C� � C� )) is a discrete subgroup ofC2 ' R4. Its rank is 3
or 4; indeed the kernel of exp contains 2i � Z � 2i � Z and also (� u (f ); � s(f )).

If A0 is of rank 2, then A0 is a discrete and co-compact subgroup ofC� �
C� and there exists an element in Cent( f; Aut(S)) such that

j� u ( )j < 1; j� s( )j < 1; (� u ( ); � s( )) 2 A:

Let (x; y) be a point of � n f (0; 0)g; the sequence

 n (x; y) =
�
(� u ( ))n x; (� s( ))n y

�

is thus an in�nite sequence of elements of � and  n (x; y) ! (0; 0) as
n ! + 1 : contradiction. This implies that A0 is of rank 1.

Corollary 8.2.4 ([43]). Let f be a H�enon automorphism. The cyclic
group generated byf is of �nite index in the group of biholomorphisms of
C2 which commute with f .

Proof. According to [23] if k is large enough, then the automorphismf has
n > 0 hyperbolic periodic points of period k whose unstable and stable
manifolds intersect each other. Proposition 8.2.3 allows us to conclude.
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8.3 Centralizer of hyperbolic birational maps

In this context we can also de�ne global stable and unstable manifolds but
this time we take the union of strict transforms of W s

loc (q) and Wu
loc (q) by

f n . They are parametrized by holomorphic applications� u
q , � s

q which are
not necessarily injective: if a curveC is contracted on a point p by f and
if W s(q) intersects E in�nitely many times, then W s(q) passes throughp
in�nitely many times.

Lemma 8.3.1 ([43]). Let � be the set of pairs(x; y) such that � u
q (x) =

� s
q(y). The set � is a discrete subset ofC� C which intersects the coordinate

axis only at the origin.

Proof. Let (x; y) be a point of � and set m = � u
q (x) = � s

q(y). The unstable
and stable manifolds can a priori pass throughm in�nitely many times.
But since each of these manifolds is the union of thef � n (W u=s

loc (q)), there
exist two open subsetsU 3 x and V 3 y of C and an open subsetW of S
containing m such that � u

q (U) \ W and � s
q(V) \W are two distinct analytic

curves ofW. We can assume that # (� u
q (U) \ � s

q(V)) = 1 (if it is not the
case we can considerU0 � U and V0 � V such that #( � u

q (U0) \ � s
q(V0)) = 1);

therefore (x; y) is the only point of � contained in U � V . The set � is
thus discrete. Sinceq is periodic there is no curve contracted ontoq by
an iterate of f , the map � u

q (resp. � s
q) doesn't pass again throughq. So �

intersects the axis-coordinates only at (0; 0).

Let us recall that if a map f is algebraically stable then the positive
orbits f n (p), n � 0, of the elementsp of Ind f � 1 do not intersect Ind f .
We say that f satis�es the Bedford-Diller condition if the sum

X

n � 0

1
� (f )n log(dist( f n (p); Ind f ))

is �nite for any p in Ind f � 1; in other words the positive orbit f n (p), n � 0,
of the elements p of Ind f � 1 does not go too fast to Indf . Note that
this condition is veri�ed by automorphisms of P2(C) or also by birational
maps whose points of indeterminacy have �nite orbit. Let us mention the
following statement.

Theorem 8.3.2 ([18, 83]). Let f be a hyperbolic birational map of complex
projective surface. Assume thatf satis�es the Bedford-Diller condition.
Then there is a in�nite number of hyperbolic periodic points whose stable
and unstable manifolds intersect.
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8.3.1 Birational maps satisfying Bedford-Diller condi-
tion

Proposition 8.3.3 ([43]). Let f be a hyperbolic birational map of a com-
plex projective surfaceS. If f satis�es the Bedford-Diller condition, then
the cyclic subgroup generated byf is of �nite index in the group of bira-
tional maps of S which commute with f .

Proof. The set of hyperbolic periodic points off of period k is a �nite set.
According to Theorem 8.3.2 there exists an integerk such that

� q is a hyperbolic periodic point of period k;

� Ws(q) and Wu (q) are Zariski dense in S;

� #(W s(q) \ Wu (q)) is not �nite.

Let  be a birational map of S which commutes with f . The map  
permutes the unstable and stable manifolds of hyperbolic periodic points
of f even if these manifolds pass through a point of indeterminacy of .
Indeed, if q is a periodic point of f and Wu (q) is Zariski-dense, then is
holomorphic in any generic point of Wu (q) so we can extend analytically
along Wu (q). Since f has � k hyperbolic periodic points of period k, there
exists a subgroupBk of Cent(f; Bir(S)) of index less than � k !; any element
of Bk �xes W s(q) and Wu (q). More precisely there exists a morphism

� : Bk ! C� � C� ;  7! (� u ( ); � s( ))

such that  (� u=s
q (z)) = � u=s

q (� u=s ( )z) for any  of Bk and for any z of C
such that  is holomorphic on a neighborhood of� u=s

q (z).
As Ws(q) and Wu (q) are Zariski dense,� is injective. Then we can

apply the arguments of Proposition 8.2.3.

8.3.2 Birational maps that don't satisfy Bedford-Diller
condition

Let f be a birational map of a complex surface S; assume thatf is alge-
braically stable. Let p be a point of indeterminacy of f . If C is a curve
contracted on p by an iterate f � n , n > 0, of f , then we say that C comes
from p. If q is a point of S for which there exists an integerm such that

8 0 � ` < m; f ` (q) 62Ind f; f m (q) = p

we say that q is a point of indeterminacy of f passing through p at the
time m. Since f is algebraically stable, the iterates f � m of f , m � 0,
are all holomorphic in a neighborhood ofp so the unique point passing
through p at the time m is f � m (p). We say that p has an in�nite negative
orbit if the set

�
f � m (p) j m � 0

	
is in�nite.
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Lemma 8.3.4 ([43]). Let f be a birational map of S. Assume that f
is algebraically stable. Letp be a point of indeterminacy of f having an
in�nite negative orbit. One of the following holds:

i. there exist an in�nite number of irreducible curves contracted on p
by the iterates f � n of f , n 2 N;

ii. there exists a birational morphism � : S ! S0 such that �f � � 1 is
an algebraically stable birational map ofS0 whose all iterates are
holomorphic in a neighborhood of� (p).

We will say that a point of indeterminacy p is persistent if there exists
no birational morphism � : S ! S0 satisfying property ii.

Proof. Assume that the union of the curves contracted byf � n , n � 0,
onto p is a �nite union C of curves.

Let us consider a curveC in C such that

� f m is holomorphic on C;
� f m (C) is a point.

We can then contract the divisor C by a birational map � : S ! S0 and
the map �f � � 1 is still algebraically stable. By induction we can suppose
that there is no such curveC in C.

If C is empty the second assertion of the statement is satis�ed.
Assume that C is not empty. If C belongs to C and f m (C) does not

belong to C then f m (C) is a point which does not belong toC and f m

is holomorphic along C: contradiction. So for any curve C of C, f m (C),
m � 0, belongs to C. We can hence assume thatC is invariant by any
f m with m � 0. The set C is invariant by f n for any n in Z so f � n (p),
n > 0, is a sequence of points ofC. Let C be an irreducible component of
C passing through p. Since C contains curves coming fromp there exists
an integer k such that f � k is holomorphic alongC and contracts C onto p.
Therefore the negative orbit of p passes periodically throughp and cannot
be in�nite: contradiction.

Lemma 8.3.5 ([58, 74]). Let S be a compact complex surface and letf be
a birational map of S. If f preserves an in�nite number of curves, thenf
preserves a �bration.

Proposition 8.3.6 ([43]). Let f be an algebraically stable birational map
of a compact complex surfaceS. Let p be a persistent point of indetermi-
nacy of f whose negative orbit is in�nite. If  is a birational map of S
which commutes withf then

� either  preserves a pencil of rational curves;
� or an iterate  m of  , m 6= 0 , coincides with an iterate f n of f .
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Proof. Let us set � := # Ind f , and consider  � ! instead of  . Since the
negative orbit of p is in�nite, there exists an integer k0 such that  is
holomorphic around the points f � k (p) for any k � k0. For any n � 0
let us denote by Cn the union of curves coming from p. The periodic
point p is persistent, so according to Lemma 8.3.4 there is an in�nite
number of curves coming fromp. Hence there exists an integern0 such
that for any n � n0 the map  does not contract Cn . Since f and  
commute,  (f � k (p)) is a point of indeterminacy of f m for at least an
integer

0 � m � n0 + k + 1 ( 8 k � k0):

This point of indeterminacy passes throughp. Let us consider f ` for some
good choice of̀ ; we can thus assume that (f � k (p)) is a point of indeter-
minacy of f passing throughp at the time k and so (f � k (p)) = f � k (p)
for any k � k0. Moreover for n su�ciently large we have  (Cn ) = Cn . We
conclude with Lemma 8.3.5.

Corollary 8.3.7 ([43]). Let f be a birational map of a compact complex
surface S which is algebraically stable. Assume that

� the map f is hyperbolic;
� f has a persistent point of indeterminacy whose negative orbit is

in�nite.

If  is a birational map of S which commutes withf , there existsn 2 Z
and m 2 Z n f 0g such that  m = f n .

Proof. Let  be in Cent(f; Bir( P2)). Assume that  preserves a pencil
of curves P. As f is hyperbolic, f doesn't preserve a pencil of curves
so  preserves two distinct pencilsP and f (P). According to [73] an
iterate of  is conjugate to an automorphism isotopic to the identity on
a minimal rational surface S0; let us still denote by f and by  the maps
of S0 obtained from f and  by conjugation. Assume that  has in�nite
order; let us denote by G the Zariski closure of the cyclic group generated
by  in Aut(S 0). It is an abelian Lie group which commutes with f . Any
subgroup of one parameter of G determines a 
ow which commutes with
f : f � t = � t f . If the orbits of � t are algebraic curves,f preserves a pencil
of curves: contradiction with � (f ) > 1. Otherwise � t �xes a �nite number
of algebraic curves and among these we �nd all the curves contracted byf
or by somef n ; hence there is a �nite number of such curves: contradiction
with the second assumption.

Since then Blanc and Cantat got a more precise statement.

Theorem 8.3.8 ([31]). Let f be a hyperbolic birational map. Then

Cent(f; Bir( P2)) ' Z o F

where F denotes a �nite group.
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8.4 Centralizer of elliptic birational maps of
in�nite order

Let us recall ([32, Proposition 1.3]) that an elliptic birational map f
of P2(C) of in�nite order is conjugate to an automorphism of P2(C) which
restricts to one of the following automorphisms on some open subset iso-
morphic to C2:

� (�x; �y ), where � , � 2 C� , and where the kernel of the group homo-
morphism Z2 ! C� given by (i; j ) 7! � i � j is generated by (k; 0) for
somek 2 Z.

� (�x; y + 1), where � 2 C� .

We can describe the centralizers of such maps.

Lemma 8.4.1 ([32]). Let us consider f = ( �x; �y ) where � , � are in
C� , and where the kernel of the group homomorphismZ2 ! C� given by
(i; j ) 7! � i � j is generated by(k; 0) for some k 2 Z. Then the centralizer
of f in Bir( P2) is

Cent(f; Bir( P2))=
�

(� (x); yR(xk ))
�
� R2C(x); � 2PGL2(C); � (�x )= �� (x)

	
:

Lemma 8.4.2 ([32]). Let us consider f = ( �x; y + � ) where � , � 2 C� .
Then Cent(f; Bir( P2)) is equal to
�

(� (x); y+ R(x))
�
� � 2 PGL2(C); � (�x ) = �� (x); R 2 C(x); R(�x ) = R(x)

	
:

8.5 Centralizer of de Jonqui�eres twists

Let us denote by � 2 the morphism from dJ (see Chapter 2, x2.3) into
PGL2(C), i.e. � 2(f ) is the second component off 2 dJ. The elements
of dJ which preserve the �bration with a trivial action on the basis of the
�bration form a normal subgroup dJ 0 of dJ (kernel of the morphism � 2);
of course dJ0 ' PGL2(C(y)). Let f be an element of dJ0; it is, up to
conjugacy, of one of the following form (see for example [67])

a (x + a(y); y); b (b(y)x; y); c
�

c(y)x + F (y)
x + c(y)

; y
�

;

with a in C(y), b in C(y) � and c, F in C[y], F being not a square (ifF is
a square, thenf is conjugate to an element of typeb).

The non �nite maximal abelian subgroups of dJ0 are

dJa =
�

(x + a(y); y)
�
� a 2 C(y)

	
; dJm =

�
(b(y)x; y)

�
� b 2 C(y) � 	

;
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dJF =
�

(x; y);
�

c(y)x + F (y)
x + c(y)

; y
� �

�
� c 2 C(y)

�

where F denotes an element ofC[y] which is not a square ([67]). We
can assume that F is a polynomial with roots of multiplicity one (up
to conjugation by a map (a(y)x; y)). Therefore if f belongs to dJ0 and
if Ab( f ) is the non �nite maximal abelian subgroup of dJ0 that contains f
then, up to conjugacy, Ab(f ) is either dJa , or dJm , or dJF . More precisely
if f is of type a (resp. b, resp. c), then Ab( f ) = dJ a (resp. Ab(f ) = dJ m ,
resp. Ab(f ) = dJ F ).

In [51] we �rst establish the following property.

Proposition 8.5.1 ([51]). Let f be an element ofdJ0. Then

� either Cent(f; Bir( P2)) is contained in dJ;

� or f is periodic.

Proof. Let f = (  (x; y); y) be an element of dJ0, i.e.  2 PGL2(C(y)).
Let ' = ( P(x; y); Q(x; y)) be a rational map that commutes with f .

If ' does not belong to dJ, thenQ = cte is a �bration invariant by f which
is not y = cte. Hence f preserves two distinct �brations and the action on
the basis is trivial in both cases sof is periodic.

This allows us to prove the following statement.

Theorem 8.5.2 ([51]). Let f be a birational map which preserves a ratio-
nal �bration, the action on the basis being trivial. If f is a de Jonqui�eres
twist, then Cent(f; Bir( P2)) is a �nite extension of Ab( f ).

This result allows us to describe, up to �nite index, the centralisers of
the elements of dJndJ0, question related to classical problems of di�erence
equations. A generic element of dJn dJ0 has a trivial centralizer.

In this section we will give an idea of the proof of Theorem 8.5.2.

8.5.1 Maps of dJa

Proposition 8.5.3 ([51]). The centralizer of f = ( x + 1 ; y) is
�

(x + b(y); � (y))
�
� b 2 C(y); � 2 PGL2(C)

	
' dJa o PGL2(C):

Proof. The map f is not periodic and so, according to Proposition 8.5.1,
any map  which commutes with f can be written as ( 1(x; y); � (y)) with �
in PGL 2(C). The equality f  =  f implies  1(x + 1 ; y) =  1(x; y) + 1.
Thus @ 1

@x (x + 1 ; y) = @ 1
@x (x; y) and @ 1

@x depends only ony, i.e.

 1(x; y) = A(y)x + B (y):
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Writing again  1(x + 1 ; y) =  1(x; y) + 1 we get A = 1. Hence

 = ( x + B (y); � (y)) ; B 2 C(y) � 2 PGL2(C):

Corollary 8.5.4. The centralizer of a non trivial element (x + b(y); y) is
thus conjugate todJa o PGL2(C).

Proof. Let f = ( x + a(y); y) be a non trivial element of dJa , i.e. a 6= 0; up
to conjugation by (a(y)x; y) we can assume thatf = ( x + 1 ; y).

8.5.2 Maps of dJm

If a 2 C(y) is non constant, we denote by stab(a) the �nite subgroup of
PGL2(C) de�ned by

stab(a) =
�

� 2 PGL2(C)
�
� a(� (y)) = a(y)

	
:

Let us also introduce the subgroup

Stab(a) =
�

� 2 PGL2(C)
�
� a(� (y)) = a(y) � 1	

:

We remark that stab(a) is a normal subgroup of Stab(a).

Example 8.5.5. If k is an integer and if a(y) = yk , then

stab(a) =
�

! k y
�
� ! k = 1

	
& Stab(a) =


 1
y

; ! k y
�
� ! k = 1

�
:

Let us denote by stab(a) the linear group

stab(a) =
�

(x; � (y))
�
� � 2 stab(a)

	
:

By de�nition the group Stab(a) is generated bystab(a) and the elements�
1
x ; � (y)

�
, with � in Stab(a) n stab(a).

Proposition 8.5.6 ([51]). Let f = ( a(y)x; y) be a non periodic element
of dJm .

If f is an elliptic birational map, i.e. a is a constant, the centralizer
of f is ��

b(y)x; � (y)
� �

� b 2 C(y) � ; � 2 PGL2(C)
	

:

If f is a de Jonqui�eres twist, then Cent(f; Bir( P2)) = dJ m o Stab(a).

Remarks 8.5.7. � For generic a the group Stab(a) is trivial; so for
generic f 2 dJm , the group Cent(f; Bir( P2)) coincides with dJm =
Ab( f ).

� If f = ( a(y)x; y) with a non constant, then Cent(f; Bir( P2)) is a
�nite extension of dJm = Ab( f ).

� If f = ( ax; y), a 2 C� , we haveCent(f; Bir( P2)) = dJ m o Stab(a)
(here we can de�neStab(a) = PGL 2(C)) .
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8.5.3 Maps of dJF

Let us now consider the elements of dJF ; as we said we can assume thatF
only has roots with multiplicity one. We can thus write f as follows:

f =
�

c(y)x + F (y)
x + c(y)

; y
�

c 2 C(y);

the curve of �xed points Cof f is given by x2 = F (y). Since the eigenvalues

of
�

c(y) F (y)
1 c(y)

�
are c(y) �

p
F (y) we note that f is periodic if and only

if c is zero; in that casef is periodic of period 2. Assume now thatf is
not periodic. As F has simple roots the genus ofC is � 2 for degF � 5,
is equal to 1 for degF 2 f 3; 4g; �nally C is rational when degF 2 f 1; 2g.

Assume that the genus of C is positive

Sincef is a de Jonqui�eres twist, f is not periodic. The map f has two �xed
points on a generic �ber which correspond to the two points on the cur-
ve x2 = F (y). The curves x2 = F (y) and the �bers y = cte are invariant
by f and there is no other invariant curve. Indeed an invariant curve which
is not a �ber y = cte intersects a generic �ber in a �nite number of points
necessary invariant by f ; since f is of in�nite order it is impossible (a
Moebius transformation which preserves a set of more than three elements
is periodic).

Proposition 8.5.8 ([51]). Let f =
�

c(y)x + F (y)
x + c(y) ; y

�
be a non periodic map

(i.e. c 6= 0) , where F is a polynomial of degree� 3 with simple roots (i.e.
the genus ofC is � 1). Then if F is generic, Cent(f; Bir( P2)) coincides
with dJF ; if it is not, Cent(f; Bir( P2)) is a �nite extension of dJF = Ab( f ).

Suppose that C is rational

Let f be an element of dJF ; assume that f is a de Jonqui�eres twist.
The curve of �xed points C of f is given by x2 = F (y). Let  be

an element of Cent(f; Bir( P2)); either  contracts C, or  preservesC.
According to Proposition 8.5.1 the map  preserves the �bration y =
constant; the curve C is transverse to the �bration so  cannot contract
C. Therefore  belongs to dJ and preservesC. As soon as degF � 3 the
assumptions of Proposition 8.5.8 are satis�ed; so assume that degF � 2.
The case degF = 2 can be deduced from the case degF = 1. Indeed let us
consider f =

�
c(y)x + y
x + c(y) ; y

�
. Let us set ' =

�
x

cy+ d ; ay + b
cy+ d

�
. We can check

that ' � 1f ' can be written
�

ec(y)x + ( ay + b)(cy + d)
x + ec(y)

; y
�

;
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and this allows to obtain all polynomials of degree 2 with simple roots. If
degF = 1, i.e. F (y) = ay + b, we have, up to conjugation by

�
x; y � b

a

�
,

F (y) = y.

Lemma 8.5.9 ([51]). Let f be a map of the form
�

c(y)x + y
x + c(y) ; y

�
with c

in C(y) � . If  is an element ofCent(f; Bir( P2)) , then � 2( ) is either �
y ,

� 2 C� , or �y , � root of unity; moreover, � 2( ) belongs tostab
�

4c(y)2

c(y)2 � y

�
.

For � in C� we denote by D1 (� ) the in�nite dihedral group

D1 (� ) =
D�

y
; !y

�
� ! root of unity

E
;

let us remark that any D1 (� ) is conjugate to D1 (1).
If c is a non constant element ofC(y) � , then S(c; � ) is the �nite sub-

group of PGL2(C) given by

S(c; � ) = stab
�

4c(y)2

c(y)2 � y

�
\ D1 (� ):

The description of Cent(f; Bir( P2)) with f in dJF and C = Fix f ratio-
nal is given by:

Proposition 8.5.10 ([51]). Let us consider f =
�

c(y)x + y
x + c(y) ; y

�
with c in

C(y) � , c non constant. There exists� in C� such that

Cent(f; Bir( P2)) = dJ y o S(c; � ):

Propositions 8.5.3, 8.5.6, 8.5.8 and 8.5.10 imply Theorem 8.5.2.

8.6 Centralizer of Halphen twists

For the de�nition of Halphen twists, see Chapter 3, x3.2.

Proposition 8.6.1 ([43, 99]). Let f be an Halphen twist. The centralizer
of f in Bir( P2) contains a subgroup of �nite index which is abelian, free
and of rank � 8.

Proof. Up to a birational change of coordinates, we can assume thatf
is an element of a rational surface with an elliptic �bration � : S ! P1

and that this �bration is f -invariant. Moreover we can assume that this
�bration is minimal (there is no smooth curve of self intersection � 1 in the
�bers) and so f is an automorphism. The elliptic �bration is the unique
�bration invariant by f (see [73]) so it is invariant by Cent( f; Bir( P2));
thus Cent(f; Bir( P2)) is contained in Aut(S).
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As the �bration is minimal, the surface S is obtained by blowing up
P2(C) in the nine base-points of an Halphen pencil1 and the rank of its
Neron-Severi group is equal to 10 (Proposition 1.1.8). The automorphism
group of S can be embedded in the endomorphisms of H2(S; Z) for the
intersection form and preserves the class [KS ] of the canonical divisor,
i.e. the class of the elliptic �bration. The dimension of the orthogonal
hyperplane to [KS] is 9 and the restriction of the intersection form on its
hyperplane is semi-negative: its kernel coincides withZ[KS]. Hence Aut(S)
contains an abelian group of �nite index whose rank is� 8.

1An Halphen pencil is a pencil of plane algebraic curves of deg ree 3n with nine
n-tuple base-points.
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Automorphisms with
positive entropy, �rst
de�nitions and properties

Let V be a complex projective manifold. Let � be a rational or holomorphic
map on V: When we iterate this map we obtain a \dynamical system": a
point p of V moves to p1 = � (p); then to p2 = � (p1); to p3 = � (p2) : : : So
� \induces a movement on V". The set

�
p; p1; p2; p3; : : :

	
is the orbit

of p:
Let A be a projective manifold; A is an Abelian variety of dimen-

sion k if A(C) is isomorphic to a compact quotient of Ck by an additive
subgroup.

Multiplication by an integer m > 1 on an Abelian variety, endomor-
phisms of degreed > 1 on projective spaces are studied since XIXth cen-
tury in particular by Julia and Fatou ([4]). These two families of maps
\have an interesting dynamic". Consider the �rst case; let f m denote
the multiplication by m: Periodic points of f m are repulsive and dense in
A(C) : a point is periodic if and only if it is a torsion point of A; the
di�erential of f n

m at a periodic point of period n is an homothety of ratio
mn > 1:

Around 1964 Adler, Konheim and McAndrew introduce a new way
to measure the complexity of a dynamical system: the topological en-
tropy ([1]). Let X be a compact metric space. Let� be a continuous map
from X into itself. Let " be a strictly positif real number. For all integer
n let N (n; " ) be the minimal cardinal of a part X n of X such that for all
y in X there exists x in X satisfying

dist( f j (x); f j (y)) � "; 8 0 � j � n:

122
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We introduce htop (f; " ) de�ned by

htop (f; " ) = lim sup
n ! + 1

1
n

log N (n; " ):

The topological entropy of f is given by

htop (f ) = lim
" ! 0

htop (f; " ):

For an isometry of X the topological entropy is zero. For the multi-
plication by m on a complex Abelian variety of dimension k we have:
htop (f ) = 2 k log m: For an endomorphism of Pk (C) de�ned by homoge-
neous polynomials of degreed we have: htop (f ) = k log d (see [104]).

Let V be a complex projective manifold. On which conditions do ra-
tional maps with chaotic behavior exist ? The existence of such rational
maps implies a lot of constraints on V :

Theorem 9.0.2 ([14]). A smooth complex projective hypersurface of di-
mension greater than1 and degree greater than2 admits no endomorphism
of degree greater than1:

Let us consider the case of compact homogeneous manifolds V : the
group of holomorphic di�eomorphisms acts faithfully on V and there are
a lot of holomorphic maps on it. Meanwhile in this context all endomor-
phisms with topological degree strictly greater than 1 come from endomor-
phisms on projective manifolds and nilvarieties.

So the \idea" is that complex projective manifolds with rich polynomial
dynamic are rare; moreover it is not easy to describe the set of rational or
holomorphic maps on such manifolds.

9.1 Some dynamics

9.1.1 Smale horseshoe

The Smale horsehoe is the hallmark of chaos. Let us now describe it (see
for example [160]). Consider the embeddingf of the disc � into itself.
Assume that

� f contracts the semi-discsf (A) and f (E ) in A;

� f sends the rectanglesB and D linearly to the rectangles f (B )
and f (D ) stretching them vertically and shrinking them horizontally,
in the case ofD it also rotates by 180 degrees.

We dont care what the imagef (C) of C is, as long asf (C) \ (B [ C [
D) = ; : In other words we have the following situation
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E

D

C

B

A

f (C)

f (D )f (B )

f (A) f (E )

There are three �xed points: p 2 f (B ); q 2 A; s 2 f (D ): The points q is
a sink in the sense that for all z 2 A [ C [ E we have lim

n ! + 1
f n (z) = q: The

points p and s are saddle points : if m lies on the horizontal through p
then f n squeezes it top as n ! + 1 ; while if m lies on the vertical
through p then f � n squeezes it top as n ! + 1 : In some coordinates
centered in p we have

8(x; y) 2 B; f (x; y) = ( kx; my )

for some 0< k < 1 < m ; similarly f (x; y) = ( � kx; � my) on D for some
coordinates centered ats: Let us recall that the sets

W s(p) =
�

z
�
� f n (z) ! p as n ! + 1

	
;

W u (p) =
�

z
�
� f n (z) ! p as n ! �1

	

are called stable and unstable manifolds ofp: They intersect at r; which is
what Poincar�e called a homoclinic point . Homoclinic points are dense
in

�
m 2 �

�
� f n (m) 2 � ; n 2 Z

	
.

The keypart of the dynamic of f happens on the horseshoe

� =
�

z
�
� f n (z) 2 B [ D 8 n 2 Z

	
:

Let us introduce the shift map on the space of two symbols. Take two
symbols 0 and 1; and look at the set � =

�
0; 1

	 Z
of all bi-in�nite sequences

a = ( an )n 2 Z where, for eachn; an is 0 or 1: The map � : � ! � that sends
a = ( an ) to � (a) = ( an +1 ) is a homeomorphism called theshift map . Let
us consider the itinerary map i : � ! � de�ned as follows: i (p) = ( sn )n 2 Z

where sn = 1 if f n (p) is in B and sn = 0 if f n (p) belongs to D: The
diagram

�

i
��

� //�

i
��

�
f //�
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commutes so every dynamical property of the shift map is possessed equally
by f j � : Due to conjugacy the chaos of� is reproduced exactly in the
horseshoe: the map� has positive entropy: log 2; it has 2n periodic orbits
of period n; and so must be the set of periodic orbits off j � :

To summarize: every dynamical system having a transverse homoclinic
point also has a horseshoe and thus has a shift chaos, even in higher di-
mensions. The mere existence of a transverse intersection between the
stable and unstable manifolds of a periodic orbit implies a horseshoe;
since transversality persists under perturbation, it follows that so does
the horseshoe and so does the chaos.

The concepts of horseshoe and hyperbolicity are related. In the descrip-
tion of the horseshoe the derivative off stretches tangent vectors that are
parallel to the vertical and contracts vectors parallel to the horizontal, not
only at the saddle points, but uniformly throughout � : In general, hy-
perbolicity of a compact invariant set such as � is expressed in terms of
expansion and contraction of the derivative on subbundles of the tangent
bundle.

9.1.2 Two examples

Let us considerPc(z) = z2 + c: A periodic point p of Pc with period n is
repelling if j(Pn

c (p))0j > 1 and the Julia set of Pc is the closure of the set
of repelling periodic points. Pc is a complex horseshoe if it is hyperbolic
(i.e. uniformly expanding on the Julia set) and conjugate to the shift on
two symbols. The Mandelbrot set M is de�ned as the set of all pointsc
such that the sequence (Pn

c (0))n does not escape to in�nity

M =
�

c 2 C
�
� 9 s 2 R; 8 n 2 N;

�
�Pn

c (0)
�
� � s

	
:

The complex horseshoe locus is the complement of the Mandelbrot set.

Let us consider the H�enon family of quadratic maps

� a;b : R2 ! R2; � a;b (x; y) = ( x2 + a � by; x):

For �xed parameters a and b; � a;b de�nes a dynamical system, and we
are interested in the way that the dynamic varies with the parameters.
The parameter b is equal to det jac� a;b ; when b = 0 ; the map has a one-
dimensional image and is equivalent toPc: As soon asb is non zero, these
maps are di�eomorphisms, and maps similar to Smale's horseshoe example
occur whena << 0 (see [70]).

In the 60's it was hoped that uniformly hyperbolic dynamical systems
might be in some sense typical. While they form a large open sets on all
manifolds, they are not dense. The search for typical dynamical systems
continues to be a great problem, in order to �nd new phenomena we try
the framework of compact complex surfaces.
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9.2 Some algebraic geometry

9.2.1 Compact complex surfaces

Let us recall some notions introduced in Chapters 1 and 3 and some others.
To any surface S we associate its Dolbeault cohomology groups Hp;q (S)

and the cohomological groups Hk (S; Z); Hk (S; R) and Hk (S; C): Set

H1;1
R (S) = H 1;1(S) \ H2(S; R):

Let f : X 99K S be a dominating meromorphic map between compact
complex surfaces, let � be a desingularization of its graph and let� 1; � 2

be the natural projections. A smooth form � in C1
p;q (S) can be pulled back

as a smooth form� �
2 � 2 C1

p;q (�) and then pushed forward as a current.
We de�ne f � by

f � � = � 1� � �
2 �

which gives a L1
loc form on X that is smooth outside Ind f: The action of f �

satis�es: f � (d� ) = d( f � � ) so descends to a linear action on Dolbeault
cohomology.

Let f � g 2 Hp;q (S) be the Dolbeault class of some smooth form�: We
set

f � f � g = f � 1� � �
2 � g 2 Hp;q (X) :

This de�nes a linear map f � from Hp;q (S) into H p;q (X) : Similarly we can
de�ne the push-forward f � = � 2� � �

1 from Hp;q (X) into H p;q (S): When f
is bimeromorphic, we havef � = ( f � 1) � : The operation (�; � ) 7!

R
� ^ �

on smooth 2-forms induced a quadratic intersection form, calledproduct
intersection , denoted by (�; �) on H2(S; C): Its structure is given by the
following fundamental statement.

Theorem 9.2.1 ([9]). Let S be a compact K•ahler surface and leth1;1 de-
note the dimension of H1;1(S; R) � H2(S; R): Then the signature of the
restriction of the intersection product to H1;1(S; R) is (1; h1;1 � 1): In par-
ticular, there is no 2-dimensional linear subspaceL in H1;1(S; R) with the
property that (v; v) = 0 forall v in L:

The Picard group Pic(P2) is isomorphic to Z (see Chapter 1, Ex-
ample 1.1.2); similarly H2(P2(C); Z) is isomorphic to Z: We may identi-
fy Pic(P2) and H2(P2(C); Z):

9.2.2 Exceptional con�gurations and characteristic
matrices

Let f 2 Bir( P2) be a birational map of degree�: By Theorem 1.3.1 there
exist a smooth projective surface S0 and � , � two sequences of blow-ups
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such that
S

�

}}zz
zz

zz
zz �

!!DD
DD

DD
DD

P2(C)
f

//______ P2(C)

We can rewrite � as follows

� : S = Sk
� k! Sk � 1

� k � 1! : : :
� 2! S1

� 1! S0 = P2(C)

where � i is the blow-up of the point pi � 1 in Si � 1: Let us set

Ei = � � 1
i (pi ); Ei = ( � i +1 � : : : � � k ) � Ei :

The divisors Ei are called the exceptional con�gurations of � and
the pi base-points off:

For any e�ective divisor D 6= 0 on P2(C) let mult pi D be de�ned induc-
tively in the following way. We set mult p1 D to be the usual multiplicity
of D at p1 : it is de�ned as the largest integer m such that the local equa-
tion of D at p1 belongs to the m-th power of the maximal ideal mP2 ;p1 :
Suppose that multp1 D is de�ned. We take the proper inverse transform
� � 1

i D of D in Si and de�ne mult pi +1 D = mult pi +1 � � 1
i D: It follows from

the de�nition that

� � 1D = � � (D) �
kX

i =1

mi Ei

where mi = mult pi D:
There are two relationships between� and the mi 's (Chapter 1, x1.2):

1 = � 2 �
kX

i =1

m2
i ; 3 = 3� �

kX

i =1

mi :

An ordered resolution of f is a decompositionf = �� � 1 where �
and � are ordered sequences of blow-ups. An ordered resolution off
induces two basis of Pic(S)

� B =
�

e0 = � � H; e1 = [ E1]; : : : ; ek = [ Ek ]
	

;

� B 0 =
�

e0
0 = � � H; e0

1 = [ E0
1]; : : : ; e0

k = [ E0
k ]

	
;

where H is a generic line. We can writee0
i as follows

e0
0 = �e 0 �

kX

i =1

mi ei ; e0
j = � j e0 �

kX

i =1

mij ei ; j � 1:
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The matrix of change of basis

M =

2

6
6
6
4

� � 1 : : : � k

� m1 � m11 : : : � m1k
...

...
...

� mk � mk1 : : : � mkk

3

7
7
7
5

is calledcharacteristic matrix of f: The �rst column of M; which is the
characteristic vector of f; is the vector (�; � m1; : : : ; � mk ): The other
columns (� i ; � m1i ; : : : ; � mki ) describe the \behavior of E0

i ": if � j > 0;
then � (E0

j ) is a curve of degree� j in P2(C) through the points p` of f with
multiplicity m`j :

Example 9.2.2. Consider the birational map

� : P2(C) 99KP2(C); (x : y : z) 99K(yz : xz : xy):

The points of indeterminacy of � are P = (1 : 0 : 0) ; Q = (0 : 1 : 0)
and R = (0 : 0 : 1); the exceptional set is the union of the three lines
� = f x = 0g; � 0 = f y = 0g and � 00= f z = 0g:

First we blow up P; let us denote byE the exceptional divisor and by
D1 the strict transform of D: Set

�
y = u1

z = u1v1

E = f u1 = 0g
� 00

1 = f v1 = 0g

�
y = r 1s1

z = s1

E = f s1 = 0g
� 0

1 = f r 1 = 0g

On the one hand

(u1; v1) ! (u1; u1v1)(y;z ) ! (u1v1 : v1 : 1)

=
�

1
u1

;
1

u1v1

�

(y;z )
!

�
1
u1

;
1
v1

�

(u1 ;v 1 )
;

on the other hand

(r 1; s1) ! (r 1s1; s1)(y;z ) ! (r 1s1 : 1 : r 1)

=
�

1
r 1s1

;
1
s1

�

(y;z )
!

�
1
r 1

;
1
s1

�

( r 1 ;s1 )
:

Hence E is sent on � 1; as � is an involution � 1 is sent on E:

Now blow upQ1; this time let us denote byF the exceptional divisor
and by D2 the strict transform of D1 :

�
x = u2

z = u2v2

F = f u2 = 0g
� 00

2 = f v2 = 0g

�
x = r 2s2

z = s2

E = f s2 = 0g
� 2 = f r 2 = 0g
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We have

(u2; v2) ! (u2; u2v2)(x;z ) ! (v2 : u2v2 : 1)

=
�

1
u2

;
1

u2v2

�

(x;z )
!

�
1
u2

;
1
v2

�

(u2 ;v 2 )

and

(r 2; s2) ! (r 2s2; s2)(x;z ) ! (1 : r 2s2 : r 2)

=
�

1
r 2s2

;
1
s2

�

(x;z )
!

�
1
r 2

;
1
s2

�

( r 2 ;s2 )
:

Therefore F ! � 0
2 and � 0

2 ! F:

Finally we blow upR2; let us denote byG the exceptional divisor and
set

�
x = u3

y = u3v3

G = f u3 = 0g
� 00

3 = f v3 = 0g

�
x = r 3s3

z = s3

E = f s3 = 0g
� 2 = f r 3 = 0g

Note that

(u3; v3) ! (u3; u3v3)(x;y ) ! (v3 : 1 : u3v3)

=
�

1
u3

;
1

u3v3

�

(x;y )
!

�
1
u3

;
1
v3

�

(u3 ;v 3 )

and

(r 3; s3) ! (r 3s3; s3)(x;y ) ! (1 : r 3 : r 3s3)

=
�

1
r 3s3

;
1
s3

�

(x;y )
!

�
1
r 3

;
1
s3

�

( r 3 ;s3 )
:

Thus G ! � 0
3 and � 0

3 ! G: There are no more points of indeterminacy,
no more exceptional curves; in other words� is conjugate to an automor-
phism of BlP;Q 1 ;R 2 P2:

Let H be a generic line. Note thatE1 = E ; E2 = F ; E3 = H : Consider
the basisf H; E; F; Gg: After the �rst blow-up � and E are swapped; the
point blown up is the intersection of� 0 and � 00so � ! � + F + G : Then
� � E = H � F � G: Similarly we have:

� � F = H � E � G and � � G = H � E � F:

It remains to determine � � H: The image of a generic line by� is a conic
hence� � H = 2H � m1E � m2F � m3G: Let L be a generic line described
by a0x + a1y + a2z: A computation shows that

(u1; v1) ! (u1; u1v1)(y;z ) ! (u2
1v1 : u1v1 : u1) ! u1(a0v2 + a1u2v2 + a2)
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vanishes to order1 on E = f u1 = 0g thus m1 = 1 : Note also that

(u2; v2) ! (u2; u2v2)(x;z ) ! (u2v2 : u2
2v2 : u2) ! u2(a0v2 + a1u2v2 + a2);

respectively

(u3; v3) ! (u3; u3v3)(x;y ) ! (u3v3 : u3 : u2
3v3) ! u3(a0v3 + a1 + a2u3v3)

vanishes to order1 on F = f u2 = 0g; resp. G = f u3 = 0g so m2 = 1 ;
resp. m3 = 1 : Therefore � � H = 2H � E � F � G and the characteristic
matrix of � in the basis

�
H; E; F; G

	
is

M � =

2

6
6
4

2 1 1 1
� 1 0 � 1 � 1
� 1 � 1 0 � 1
� 1 � 1 � 1 0

3

7
7
5 :

Example 9.2.3. Let us consider the involution given by

� : P2(C) 99KP2(C); (x : y : z) 99K(xy : z2 : yz):

We can show thatM � = M � :

Example 9.2.4. Consider the birational map

� : P2(C) 99KP2(C); (x : y : z) 99K(x2 : xy : y2 � xz):

We can verify that M � = M � :

9.3 Where can we �nd automorphisms with
positive entropy ?

9.3.1 Some properties about the entropy

Let f be a map of classC1 on a compact manifold V; the topological
entropy is greater than the logarithm of the spectral radius of the linear
map induced by f on H� (V ; R); direct sum of the cohomological groups
of V:

htop (f ) � log r (f � ):

Remark that the inequality h top (f ) � log r (f � ) is still true in the mero-
morphic case ([76]). Before stating a more precise result when V is K•ahler
we introduce some notation: for all integerp such that 0 � p � dimC V we
denote by � p(f ) the spectral radius of the mapf � acting on the Dolbeault
cohomological group Hp;p (V ; R):
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Theorem 9.3.1 ([104, 102, 174]). Let f be a holomorphic map on a com-
pact complex K•ahler manifold V; we have

htop (f ) = max
0� p� dim C V

log � p(f ):

Remark 9.3.2. The spectral radius of f � is strictly greater than 1 if and
only if one of the � p(f )'s is and, in fact, if and only if � (f ) = � 1(f ) > 1.
In other words in order to know if the entropy of f is positive we just have
to study the growth of(f n ) � f � g where f � g is a K•ahler form.

Examples 9.3.3. � Let V be a compact K•ahler manifold andAut 0(V)
be the connected component ofAut(V) which contains the identity
element. The topological entropy of each element ofAut 0(V) is zero.

� The topological entropy of an holomorphic endomorphismf of the
projective sapce is equal to the logarithm of the topological degree
of f:

� Whereas the topological entropy of an elementary automorphism is
zero, the topological entropy of an H�enon automorphism is positive.

9.3.2 A theorem of Cantat

Before describing the pairs (S; f ) of compact complex surfaces S carry-
ing an automorphism f with positive entropy, let us recall that a surface
S is rational if it is birational to P2(C). A rational surface is always
projective ([9]). A K 3 surface is a complex, compact, simply connected
surface S with a trivial canonical bundle. Equivalently there exists a holo-
morphic 2-form ! on S which is never zero;! is unique modulo multipli-
cation by a scalar. Let S be a K3 surface with a holomorphic involution
�: If � has no �xed point the quotient is an Enriques surface , otherwise
it is a rational surface. As Enriques surfaces are quotients of K3 surfaces
by a group of order 2 acting without �xed points, their theory is similar
to that of algebraic K3 surfaces.

Theorem 9.3.4 ([40]). Let S be a compact complex surface. Assume that
S has an automorphismf with positive entropy. Then

� either f is conjugate to an automorphism on the unique minimal
model of S which is either a torus, or a K3 surface, or an Enriques
surface;

� or S is rational, obtained from P2(C) by blowing up P2(C) in at
least 10 points and f is birationally conjugate to a birational map of
P2(C):

In particular S is k•ahlerian.
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Examples 9.3.5. � Set � = Z[i ] and E = C=� : The group SL2(�)
acts linearly on C2 and preserves the lattice� � �; then each element
A of SL2(�) induces an automorphismf A on E � E which commutes
with � (x; y) = ( ix; iy): Each automorphism f A can be lifted to an
automorphism ff A on the desingularization of (E � E )=� which is a
K3 surface. The entropy of ff A is positive as soon as the modulus of
one eigenvalue ofA is strictly greater than 1:

� We have the following statement due to Torelli.

Theorem 9.3.6. Let S be a K3 surface. The morphism

Aut(S) ! GL(H 2(S; Z)) ; f 7! f �

is injective.

Conversely assume that is an element ofGL(H 2(S; Z)) which pre-
serves the intersection form onH2(S; Z); the Hodge decomposition
of H2(S; Z) and the K•ahler cone of H2(S; Z): Then there exists an
automorphism f on S such that f � =  :

The case of K3 surfaces has been studied by Cantat, McMullen, Sil-
verman, Wang and others (see for example [41, 134, 162, 171]). The con-
text of rational surfaces produces much more examples (see for example
[135, 19, 20, 21, 69]).

9.3.3 Case of rational surfaces

Let us recall the following statement due to Nagata.

Proposition 9.3.7 ([138], Theorem 5). Let S be a rational surface and
let f be an automorphism onS such that f � is of in�nite order; then
there exists a sequence of holomorphic maps� j +1 : Sj +1 ! Sj such that
S1 = P2(C); SN +1 = S and � j +1 is the blow-up ofpj 2 Sj :

Remark that a surface obtained from P2(C) via generic blow-ups has
no nontrivial automorphism ([114, 123]). Moreover we have the following
statement which can be found for example in [72, Proposition 2.2.].

Proposition 9.3.8. Let S be a surface obtained fromP2(C) by blowing
up n � 9 points. Let f be an automorphism onS: The topological entropy
of f is zero.

Moreover, if n � 8 then there exists an integerk such that f k is bira-
tionally conjugate to an automorphism of the complex projective plane.
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Proof. Assume that f has positive entropy log� (f ) > 0. According to
[40] there exists a non-trivial cohomology class� in H2(S; R) such that
f � � = � (f )� and � 2 = 0. Moreover f � KS = f � KS = K S. Since

(�; KS) = ( f � �; f � KS) = ( � (f )�; KS)

we have (�; KS) = 0. The intersection form on S has signature (1; n � 1)
and K2

S � 0 for n � 9 so � = cKS for some c < 0. But then f � � = � 6=
� (f )� : contradiction. The map f thus has zero entropy.

If n � 8, then K2
S > 0. The intersection form is thus strictly negative

on the orthogonal complementH � H2(S; R) of K S. But dim H is �nite,
H is invariant under f � and f � preserves H2(S; Z) so f � has �nite order on
H . Therefore f k � is trivial for some integer k. In particular f k preserves
each of the exceptional divisors inX that correspond to the n � 8 points
blown up in P2(C). So f k descends to a well-de�ned automorphism of
P2(C).

Let f be an automorphism with positive entropy on a K•ahler surface.
The following statement gives properties on the eigenvalues off � :

Theorem 9.3.9 ([17], Theorem 2.8, Corollary 2.9). Let f be an auto-
morphism with positive entropy log � (f ) on a K•ahler surface. The �rst
dynamical degree� (f ) is an eigenvalue off � with multiplicity 1 and this
is the unique eigenvalue with modulus strictly greater than1:

If � is an eigenvalue off � ; then either � belongs tof � (f ); � (f ) � 1g;
or j� j is equal to1:

Proof. Let v1, : : :, vk denote the eigenvectors off � for which the associated
eigenvalue� ` has modulus> 1. We have

(vj ; vk ) = ( f � vj ; f � vk ) = � j � k (vj ; vk ); 8 1 � j � k

so (vj ; vk ) = 0. Let L be the linear span ofv1, : : :, vk . Each elementv =P
i � i vi in L satis�es (v; v) = 0. According to Theorem 9.2.1 dim L � 1.

But since � (f ) > 1, L is spanned by a unique nontrivial eigenvector. Ifv
has eigenvalue� , then v has eigenvalue� so we must have� = � = � (f ).

Let us see that� (f ) has multiplicity one. Assume that it has not; then
there exists � such that f � � = � (f )� + cv. In this case

(�; v ) = ( f � �; f � v) = ( � (f )� + cv; �v ) = � 2(�; v )

so (�; v ) = 0. Similarly we have ( �; � ) = 0 so by Theorem 9.2.1 again, the
space spanned by� and v must have dimension 1; in other words� (f ) is
a simple eigenvalue.

We know that � (f ) is the only eigenvalue of modulus> 1. Since
(f � ) � 1 = ( f � 1) � , if � is an eigenvalue off � , then 1

� is an eigenvalue of
(f � 1) � . Applying the �rst statement to f � 1 we obtain that � is the only
eigenvalue of (f � 1) � with modulus strictly larger than 1.
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Let � f denote the characteristic polynomial of f � : This is a monic
polynomial whose constant term is� 1 (constant term is equal to the de-
terminant of f � ). Let 	 f be the minimal polynomial of � (f ): Except for
� (f ) and � (f ) � 1 all zeroes of� f (and thus of 	 f ) lie on the unit circle.
Such polynomial is a Salem polynomial and such a � (f ) is a Salem
number . So Theorem 9.3.9 says that iff is conjugate to an automor-
phism then � (f ) is a Salem number; in fact the converse is true ([31]).
There exists another birational invariant which allows us to characterize
birational maps that are conjugate to automorphisms (see [32, 31]).

9.4 Linearization and Fatou sets

9.4.1 Linearization

Let us recall some facts about linearization of germs of holomorphic dif-
feomorphism in dimension 1 when the modulus of the multipliers is 1: Let
us consider

f (z) = �z + a2z2 + a3z3 + : : : ; � = e2i �� ; � 2 R n Q (9.4.1)

We are looking for  (z) = z + b2z2 + : : : such that f  (z) =  (�z ):
Since we can formally compute the coe�cients bi

b2 =
a2

� 2 � �
; : : : ; bn =

an + Qn

� n � �

with Qn 2 Z[ai ; i � n � 1; bi ; i � n] we say that f is formally lineari-
zable . If  converges, we say that the germf is analytically lineariz-
able .

Theorem 9.4.1 (Cremer). If lim inf j� q � � j1=q = 0 ; there exists an ana-
lytic germ f of the type (9.4.1) which is not analytically linearizable.

More precisely if lim inf j� q � � j
1

� q = 0 ; then no polynomial germ

f (z) = �z + a2z2 + : : : + z�

of degree� is linearizable.

Theorem 9.4.2 (Siegel). If there exist two constants c and M strictly
positive such thatj� q � � j � c

qM then any germf (z) = �z + a2z2 + : : : is
analytically linearizable.

Let us now deal with the case of two variables. Let us consider

f (x; y) = ( �x; �y ) + h.o.t.

with �; � of modulus 1 but not root of unity. The pair ( �; � ) is resonant
if there exists a relation of the form � = � a � b or � = � a � b where a; b
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are some positive integers such thata + b � 2: A resonant monomial is
a monomial of the form xayb: We say that � and � are multiplicatively
independent if the unique solution of � a � b = 1 with a; b in Z is (0; 0):
The numbers � and � are simultaneously diophantine if there exist
two positive constants c and M such that

min
�

j� a � b � � j; j� a � b � � j
�

�
c

ja + bjM
8a; b2 N; a + b � 2:

Theorem 9.4.3. If � and � are simultaneously diophantine thenf is
linearizable.

If � and � are algebraic and multiplicatively independent then they are
simultaneously diophantine.

For more details see [6, 34, 111, 161].

9.4.2 Fatou sets

De�nitions and properties

Let f be an automorphism on a compact complex manifold M. Let us recall
that the Fatou set F (f ) of f is the set of points which own a neighborhood
V such that

�
f n

jV ; n � 0
	

is a normal family. Let us consider

G = G(U) =
�

 : U ! U
�
�  = lim

n j ! + 1
f n j

	
:

We say that U is a rotation domain if G is a subgroup of Aut(U), that is,
if any element ofG de�nes an automorphism ofU: An equivalent de�nition
is the following: if U is a component ofF (f ) which is invariant by f , we
say that U is a rotation domain if f jU is conjugate to a linear rotation; in
dimension 1 this is equivalent to have a Siegel disk. We have the following
properties ([22]).

� If f preserves a smooth volume form, then any Fatou component is
a rotation domain.

� If U is a rotation domain, G is a subgroup of Aut(M):

� A Fatou component U is a rotation domain if and only there exists
a subsequence such that (nj ) ! + 1 and such that (f n j ) converges
uniformly to the identity on compact subsets of U:

� If U is a rotation domain, G is a compact Lie group and the action
of G on U is analytic real.

Let G0 be the connected component of the identity ofG: Since G is a
compact, in�nite, abelian Lie group, G0 is a torus of dimensiond � 0; let
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us note that d � dimC M: We say that d is the rank of the rotation
domain . The rank is equal to the dimension of the closure of a generic
orbit of a point in U:

We have some geometric information on the rotation domains: ifU is
a rotation domain then it is pseudo-convex ([22]).

Let us give some details when M is a k•ahlerian surface carrying an
automorphism with positive entropy.

Theorem 9.4.4 ([22]). Let S be a compact, k•ahlerian surface and letf be
an automorphism of S with positive entropy. Let U be a rotation domain
of rank d. Then d � 2:

If d = 2 the G0-orbit of a generic point of U is a real 2-torus.
If d = 1 ; there exists a holomorphic vector �eld which induces a foliation

by Riemann surfaces onS whose any leaf is invariant byG0:

We can use an argument of local linearization to show that some �xed
points belong to the Fatou set. Conversely we can always linearize a �xed
point of the Fatou set.

Fatou sets of H�enon automorphisms

Let f be a H�enon automorphism. Let us denote byK � the subset ofC2

whose positive/negative orbit is bounded:

K � =
�

(x; y) 2 C2
�
� �

f � n (x; y) j n � 0
	

is bounded
	

:

Set

K = K+ \ K � ; J � = @K � ; J = J + \ J � ; U+ = C2 n K+ :

Let us state some properties.

� The family of the iterates f n ; n � 0; is a normal family in the interior
of K+ :

� If ( x; y) belongs to J + there exists no neighborhoodU of (x; y) on
which the family

�
f n

jU

�
� n � 0

	
is normal.

We have the following statement.

Proposition 9.4.5. The Fatou set of a H�enon map is C2 n J + :

De�nitions 9.4.6. Let 
 be a Fatou component;
 is recurrent if there
exist a compact subsetC of 
 and a point m in C such that f n j (m) belongs
to C for an in�nite number of nj ! + 1 : A recurrent Fatou component
is periodic.
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A �xed point m of f is a sink if m belongs to the interior of the stable
manifold

Ws(m) =
�

p
�
� lim

n ! + 1
dist(f n (m); f n (p)) = 0

	
:

We say that Ws(m) is the basin of m: If m is a sink, the eigenvalues
of Df m have all modulus less than1:

A Siegel disk (resp. Herman ring ) is the image of a disk(resp. of
an annulus) � by an injective holomorphic map ' having the following
property: for any z in � we have

f ' (z) = ' (�z ); � = e2i �� ; � 2 R n Q:

We can describe the recurrent Fatou components of a H�enon map.

Theorem 9.4.7 ([24]). Let f be a H�enon map with jacobian< 1 and let

 be a recurrent Fatou component. Then
 is

� either the basin of a sink;

� or the basin of a Siegel disk;

� or a Herman ring.

Under some assumptions the Fatou component of a H�enon automor-
phisms are recurrent.

Proposition 9.4.8. The Fatou component of a H�enon map which pre-
serves the volume are periodic and recurrent.

9.4.3 Fatou sets of automorphisms with positive en-
tropy on torus, (quotients of) K 3, rational sur-
faces

If S is a complex torus, an automorphism of positive entropy is essentially
an element of GL2(Z); since the entropy is positive, the eigenvalues satisfy:
j� 1j < 1 < j� 2j and the Fatou set is empty.

Assume that S is a K3 surface or a quotient of a K3 surface. Since there
exists a volume form, the only possible Fatou components are rotation
domains. McMullen proved there exist non algebraic K3 surfaces with
rotation domains of rank 2 (see [134]); we can also look at [146].

The other compact surfaces carrying automorphisms with positive en-
tropy are rational ones; in this case there are rotation domains of rank 1,
2 (see [20, 135]). Other phenomena like attractive, repulsive basins can
happen ([20, 135]).



Chapter 10

Weyl groups and
automorphisms of
positive entropy

In [135] McMullen, thanks to Nagata's works and Harbourne's works, es-
tablishes a result similar to Torelli's theorem for K3 surfaces: he con-
structs automorphisms on some rational surfaces prescribing the action of
the automorphisms on cohomological groups of the surface. These rational
surfaces own, up to multiplication by a constant, a unique meromorphic
nowhere vanishing 2-form 
 : If f is an automorphism on S obtained via
this construction, f � 
 is proportional to 
 and f preserves the poles of 
:
When we project S on the complex projective plane,f induces a birational
map preserving a cubic.

The relationship of the Weyl group to the birational geometry of the
plane, used by McMullen, is discussed since 1895 in [122] and has been
much developed since then ([82, 138, 139, 57, 99, 130, 105, 132, 106, 142,
107, 77, 114, 175, 81]).

10.1 Weyl groups

Let S be a surface obtained by blowing up the complex projective plane
in a �nite number of points. Let

�
e0; : : : ; en

	
be a basis of H2(S; Z); if

e0 � e0 = 1 ; ej � ej = � 1; 8 1 � j � k; ei � ej = 0 ; 8 0 � i 6= j � n

then
�

e0; : : : ; en
	

is a geometric basis . Consider � in H2(S; Z) such
that � � � = � 2; then R� (x) = x + ( x � � )� sends� on � � and R� �xes
each element of� ? ; in other words R� is a re
ection in the direction �:

138
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Consider the vectors given by

� 0 = e0 � e1 � e2 � e3; � j = ej +1 � ej ; 1 � j � n � 1:

For all j in f 0; : : : ; n � 1g we have� j � � j = � 2: When j is nonzero the
re
ection R� j induces a permutation onf ej ; ej +1 g: The subgroup genera-
ted by the R� j 's, with 1 � j � n � 1; is the set of permutations on the
elementsf e1; : : : ; en g: Let W n � O(Z1;n ) denote the group

hR� j j 0 � j � n � 1i

which is called Weyl group .
The Weyl groups are, for 3� n � 8; isomorphic to the following �nite

groups

A1 � A2; A4; D5; E6; E7; E8

and are associated to del Pezzo surfaces. Forn � 9 Weyl groups are in�nite
and for n � 10 Weyl groups contain elements with a spectral radius strictly
greater than 1:

If Y and S are two projective surfaces, let us recall that Ydominates S
if there exists a surjective algebraic birational morphism from Y to S:

Theorem 10.1.1 ([78]). Let S be a rational surface which dominates
P2(C):

� The Weyl group Wk � GL(Pic(S)) does not depend on the chosen
exceptional con�guration.

� If E and E0 are two distinct exceptional con�gurations, there exists
w in Wk such that w(E) = E0:

� If S is obtained by blowing upk generic points and if E is an excep-
tional con�guration, then for any w in the Weyl group w(E) is an
exceptional con�guration.

If f is an automorphism of S; by a theorem of Nagata there exists a
unique elementw in W n such that

Z1;n

'

��

w //Z1;n

'

��
H2(S; Z)

f � //H2(S; Z)

commutes; we said that the automorphismf realizes ! .
A product of generators R� j is a Coxeter element of Wn : Note that

all Coxeter elements are conjugate so the spectral radius of a Coxeter
element is well de�ned.
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The map � is represented by the re
ection � ijk = R� ijk where � ijk =
e0 � ei � ej � ek and i , j , k � 1 are distinct elements; it acts as follows

e0 ! 2e0 � ei � ej � ek ; ei ! e0 � ej � ek ; ej ! e0 � ei � ek

ek ! e0 � ei � ej ; e` ! e` if ` 62 f0; i; j; k g:

When n = 3 ; we say that � 123 is the standard element of W3: Con-
sider the cyclic permutation

(123: : : n) = � 123R� 1 : : : R� n � 1 2 � n � Wn ;

let us denote it by � n : For n � 4 we de�ne the standard element w of
Wn by w = � n � 123: It satis�es

w(e0) = 2 e0 � e2 � e3 � e4; w(e1) = e0 � e3 � e4;w(e2) = e0 � e2 � e4;

w(e3) = e0 � e2 � e3; w(ej ) = ej +1 ; 4 � j � n � 2; w(en � 1) = e1:

10.2 Statements

In [135] McMullen constructs examples of automorphisms with positive
entropy \thanks to" elements of Weyl groups.

Theorem 10.2.1 ([135]). For n � 10; the standard element ofWn can
be realizable by an automorphismf n with positive entropy log(� n ) of a
rational surface Sn :

More precisely the automorphismf n : Sn ! Sn can be chosen to have
the following additional properties:

� Sn is the complex projective plane blown up inn distinct points p1;
: : : ; pn lying on a cuspidal cubic curveC;

� there exists a nowhere vanishing meromorphic 2-form� on Sn with
a simple pole along the proper transform ofC;

� f �
n (� ) = � n � �;

� (hf n i ; Sn ) is minimal in the sense of Manin1.

1Let Z be a surface and G be a subgroup of Aut(S) : A birational map f : S 99K eS is G-
equivariant if eG = f Gf � 1 � Aut( eS): The pair (G ; S) is minimal if every G-equivariant
birational morphism is an isomorphism.
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The �rst three properties determine f n uniquely. The points pi admit
a simple description which leads to concrete formulas forf n :

The smallest known Salem number is a root� Lehmer � 1:17628081 of
Lehmer's polynom

L(t) = t10 + t9 � t7 � t6 � t5 � t4 � t3 + t + 1 :

Theorem 10.2.2 ([135]). If f is an automorphism of a compact complex
surface with positive entropy, thenhtop (f ) � log � Lehmer :

Corollary 10.2.3 ([135]). The map f 10 : S10 ! S10 is an automorphism
of S10 with the smallest possible positive entropy.

Theorem 10.2.4 ([135]). There is an in�nite number of n for which the
standard element ofWn can be realized as an automorphism ofP2(C) blown
up in a �nite number of points having a Siegel disk.

Let us also mention a more recent work in this direction ([169]). Diller
also �nd examples using plane cubics ([72]).

10.3 Tools

10.3.1 Marked cubic curves

A cubic curve C � P2(C) is a reduced curve of degree 3. It can be
singular or reducible; let us denote byC� its smooth part. Let us recall
some properties of the Picard group of such a curve (see [108] for more
details). We have the following exact sequence

0 �! Pic0(C) �! Pic(C) �! H2(C; Z) �! 0

where Pic0(C) is isomorphic to

� either a torus C=� (when C is smooth);

� or to the multiplicative group C� (it corresponds to the following
case:C is either a nodal cubic or the union of a cubic curve and a
transverse line, or the union of three line in general position);

� or to the additive group C (when C is either a cuspidal cubic, or
the union of a conic and a tangent line, or the union of three lines
through a single point).

A marked cubic curve is a pair (C; � ) of an abstract curve Cequipped
with a homomorphism � : Z1;n ! Pic(C) such that

� the sections of the line bundle � (e0) provide an embedding of C
into P2(C);
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� there exist distinct base-points pi on C� for which � (ei ) = [ pi ] for
any i = 2 ; : : : ; n:

The base-pointspi are uniquely determined by � sinceC� can be em-
bedded into Pic(C): Conversely a cubic curveC which embeds intoP2(C)
and a collection of distinct points on C� determine a marking of C:

Remark 10.3.1. Di�erent markings of C can yield di�erent projective
embeddingsC ,! P2(C) but all these embeddings are equivalent under the
action of Aut( C):

Let (C; � ) and (C0; � 0) be two marked cubic curves; anisomorphism
between (C; � ) and (C0; � 0) is a biholomorphic application f : C ! C 0 such
that � 0 = f � � �:

Let (C; � ) be a marked cubic curve; let us set

W (C; � ) =
�

w 2 Wn
�
� (C; �w ) is a marked cubic curve

	
;

Aut( C; � ) =
�

w 2 W (C; � )
�
� (C; � ) & ( C0; � 0) are isomorphic

	
:

We can decompose the marking� of C in two pieces

� 0 : ker(deg� � ) ! Pic0(C); deg� � : Z1;n ! H2(C; Z):

We have the following property.

Theorem 10.3.2 ([135]). Let (C; � ) be a marked cubic curve. The appli-
cations � 0 and deg� � determine (C; � ) up to isomorphism.

A consequence of this statement is the following.

Corollary 10.3.3 ([135]). An irreducible marked cubic curve (C; � ) is
determined, up to isomorphism, by� 0 : L n ! Pic0(C):

10.3.2 Marked blow-ups

A marked blow-up (S; �) is the data of a smooth projective surface S
and an isomorphism � : Z1;n ! H2(S; Z) such that

� � sends the Minkowski inner product ( x �x) = x2 = x2
0 � x2

1 � : : : � x2
n

on the intersection pairing on H2(S; Z);

� there exists a birational morphism � : S ! P2(C) presenting S as the
blow-up of P2(C) in n distinct base-points p1; : : : ; pn ;

� �( e0) = [H] and �( ei ) = [E i ] for any i = 1, : : :, n where H is the
pre-image of a generic line inP2(C) and Ei the divisor obtained by
blowing up pi :
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The marking determines the morphism� : S ! P2(C) up to the action
of an automorphism of P2(C):

Let (S; �) and (S 0; �) be two marked blow-ups; an isomorphism be-
tween (S; �) and (S 0; � 0) is a biholomorphic application F : S ! S0 such
that the following diagram

Z1;n

�

zzuuu
uuu

uuu � 0

$$JJJ
JJJ

JJJ

H2(S; Z)
F �

//H2(S0; Z)

commutes. If (S; �) and (S 0; � 0) are isomorphic, there exists an automor-
phism ' of P2(C) such that p0

i = ' (pi ):
Assume that there exist two birational morphisms �; � 0: S ! P2(C)

such that S is the surface obtained by blowing upP2(C) in p1; : : : ; pn (resp.
p0

1; : : : ; p0
n ) via � (resp. � 0).There exists a birational map f : P2(C) 99K

P2(C) such that the diagram

S
�

}}zz
zz

zz
zz

� 0

!!DD
DD

DD
DD

P2(C)
f

//______ P2(C)

commutes; moreover there exists a unique elementw in Z1;n such that
� 0 = � w:

The Weyl group satis�es the following property due to Nagata: let
(S; �) be a marked blow-up and let w be an element ofZ1;n : If (S; � w) is
still a marked blow-up, then w belongs to the Weyl group Wn : Let (S; �)
be a marked blow-up; let us denote byW (S; �) the set of elements w of
Wn such that (S; � w) is a marked blow-up:

W (S; �) =
�

w 2 Wn
�
� (S; � w) is a marked blow-up

	
:

The right action of the symmetric group reorders the base-points of a blow-
up so the group of permutations is contained inW (S; �) : The following
statement gives other examples of elements ofW (S; �) :

Theorem 10.3.4 ([135]). Let (S; �) be a marked blow-up and let� be the
involution (x : y : z) 99K(yz : xz : xy). Let us denote byp1; : : : ; pn the
base-points of(S; �) : If, for any 4 � k � n; the point pk does not belong
to the line through pi and pj ; where 1 � i; j � 3; i 6= j; then (S; � � 123) is
a marked blow-up.
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Proof. Let � : S ! P2(C) be the birational morphism associated to the
marked blow-up (S; �) : Let us denote by q1; q2 and q3 the points of inde-
terminacy of �: Let us choose some coordinates for whichpi = qi for i = 1 ;
2; 3; then � 0 = �� : S ! P2(C) is a birational morphism which allows us to
see (S; � � 123) as a marked blow-up with base-pointsp1; p2; p3 and � (pi )
for i � 4: These points are distinct since, by hypothesis,p4; : : : ; pn do not
belong to the lines contracted by� .

A root � of � n is a nodal root for (S; �) if �( � ) is represented by
an e�ective divisor D: In this case D projects to a curve of degreed > 0
on P2(C); thus � = de0 �

P
i � 1 mi ei is a positive root. A nodal root is

geometric if we can write D as a sum of smooth rational curves.

Theorem 10.3.5 ([135]). Let (S; �) be a marked blow-up. If three of the
base-points are colinear,(S; �) has a geometric nodal root.

Proof. After reordering the base-points p1; : : : ; pn ; we can assume that
p1; p2 and p3 are colinear; let us denote byL the line through these three
points. We can suppose that the base-points which belong toL are p1;
: : : ; pk : The strict transform eL of L induces a smooth rational curve on S
with [ eL ] = [H �

P k
i =1 Ei ] so

�( � 123) = [ eL +
kX

i =1

Ei ]:

Theorem 10.3.6 ([135]). Let (S; �) be a marked blow-up. If(S; �) has
no geometric nodal root, then

W (S; �) = W n :

Proof. If (S; �) has no geometric nodal root and if w belongs toW (S; �) ;
then (S; � w) has no geometric nodal root. It is so su�cient to prove that
the generators of Wn belong to W (S; �) : Since the group of permutations
is contained in W (S; �), it is clear for the transpositions; for � 123 it is a
consequence of Theorems 10.3.4 and 10.3.5.

Corollary 10.3.7 ([135]). A marked surface has a nodal root if and only
if it has a geometric nodal root.
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10.3.3 Marked pairs

First de�nitions

Let (S; �) be a marked blow-up. Let us recall that an anticanonical
curve is a reduced curveY � S such that its class in H2(S; Z) satis�es

[Y ] = [3H �
X

i

Ei ] = � KS: (10.3.1)

A marked pair (S; � ; Y ) is the data of a marked blow-up (S; �) and an
anticanonical curve Y: An isomorphism between marked pairs (S; � ; Y )
and (S0; � 0; Y 0) is a biholomorphism f from S into S0; compatible with
markings and which sendsY to Y 0: If n � 10; then S contains at most
one irreducible anticanonical curve; indeed if such a curveY exists, then
Y 2 = 9 � n < 0:

From surfaces to cubic curves

Let us consider a marked pair (S; � ; Y ): Let � be the projection of S to
P2(C) compatible with � : The equality (10.3.1) implies that C = � (Y )
is a cubic curve through any base-pointpi with multiplicity 1 : Moreover,
Ei � Y = 1 implies that � : Y ! C is an isomorphism. The identi�cation
of H2(S; Z) and Pic(S) allows us to obtain the natural marking

� : Z1;n ��! H2(S; Z) = Pic(S) r�! Pic(Y )
� ��! Pic(C)

where r is the restriction r : Pic(S) ! Pic(Y ): Therefore a marked pair
(S; Y;�) determines canonically a marked cubic curve (C; � ):

From cubic curves to surfaces

Conversely let us consider a marked cubic curve (C; � ): Then we have base-
points pi 2 C determined by (� (ei ))1� i � n and an embeddingC � P2(C)
determined by � (e0): Let (S; �) be the marked blow-up with base-points pi

and Y � S the strict transform of C: Hence we obtain a marked pair
(S; � ; Y ) called blow-up of (C; � ) and denoted by Bl(C; � ):

This construction inverts the previous one, in other words we have the
following statement.

Proposition 10.3.8 ([135]). A marked pair determines canonically a
marked cubic curve and conversely.
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10.4 Idea of the proof

The automorphisms constructed to prove the previous results are obtained
from a birational map by blowing up base-points on a cubic curveC; the
cubic curves play a very special role because its transformsY are anti-
canonical curves.

Assume that w 2 Wn is realized by an automorphismF of a rational
surface S which preserve an anticanonical curveY . A marked cubic curve
(C; � ) is canonically associated to a marked pair (S; � ; Y ) (Theorem 10.3.8).
Then there exists a birational map f : P2(C) 99K P2(C) such that:

� the lift of f to S coincides with F;

� f preservesC ,

� and f induces an automorphismf � of Pic0(C) which satis�es � 0w =
f � � 0: In other words [� 0] is a �xed point for the natural action of w
on the moduli space of markings.

Conversely to realize a given elementw of the group Wn we search a
�xed point � 0 in the moduli space of markings. We can associate to� 0 a
marked cubic (C; � ) up to isomorphism (Corollary 10.3.3). Let us denote
by (S; � ; Y ) the marked pair canonically determined by (C; � ): Assume
that, for any � in � n ; � 0(� ) is non zero (which is a generic condition); the
base-pointspi do not satisfy some nodal relation (they all are distinct, no
three are on a line, no six are on a conic, etc). According to a theorem of
Nagata there exists a second projection� 0: S ! P2(C) which corresponds
to the marking � w: Let us denote by C0 the cubic � 0(Y ): Since [� 0] is a
�xed point of w; the marked cubics (C0; �w ) and (C; � ) are isomorphic. But
such an isomorphism is an automorphismF of S satisfying F� � = � w:

Let us remark that in [114, 105, 152, 72] there are also constructions
with automorphisms of surfaces and cubic curves.

10.5 Examples

Let us consider the family of birational maps f : P2(C) 99KP2(C) given in
the a�ne chart z = 1 by

f (x; y) =
�

a + y; b+
y
x

�
; a; b2 C:

Let us remark that the caseb = � a has been studied in [152] and [11].
The points of indeterminacy of f are p1 = (0 : 0 : 1) ; p2 = (0 : 1 : 0)

and p3 = (1 : 0 : 0). Let us set p4 = ( a : b : 1) and let us denote by
� (resp. � 0) the triangle whose vertex are p1; p2; p3 (resp. p2; p3; p4).



Chapter 10. Weyl groups and automorphisms of positive entropy 147

The map f sends � onto � 0 : the point p1 (resp. p2; resp. p3) is blown
up on the line (p1p4) (resp. (p2p3); resp. (p3p4)) and the lines (p1p2)
(resp. (p1p3); resp. (p2p3)) are contracted on p2 (resp. p4; resp. p3).

If a and b are chosen such thatp1 = p4; then � is invariant by f and
if we blow up P2(C) at p1; p2; p3 we obtain a realization of the standard
Coxeter element of W3: Indeed, f sends a generic line onto a conic through
the pi ; so w(e0) = 2 e0 � e1 � e2 � e3: The point p1 (resp. p2; resp. p3) is
blown up on the line through p2 and p3 (resp. p1 and p3; resp. p1 and p2).
Therefore

w(e1) = e0 � e2 � e3; w(e2) = e0 � e1 � e3; w(e3) = e0 � e1 � e2:

More generally we have the following statement.

Theorem 10.5.1 ([135]). Let us denote bypi +4 the i -th iterate f i (p4)
of p4:

The realization of the standard Coxeter element ofWn corresponds to
the pairs (a; b) of C2 such that

pi 62(p1p2) [ (p2p3) [ (p3p1); pn +1 = p1:

Proof. Assume that there exists an integer i such that f i (p4) = pi +4 :
Let (S; � ) be the marked blow-up with base-pointspi : The map f lifts to
a morphism F0 : S ! P2(C): Since any pi is now the image F0(` i ) of a
line in S; the morphism F0 lifts to an automorphism F of S such that f
lifts to F: Let us �nd the element w realized by F: Let us remark that
f sends a generic line onto a conic throughp2; p3 and p4 thus w(e0) =
2e0 � e2 � e3 � e4: The point p1 is blown up to the line through p3 and p4
so w(e1) = e0 � e3 � e4; similarly we obtain

w(e2) = e0 � e2 � e4 ; w(e3) = e0 � e2 � e3 ;

w(ei ) = ei +1 for 4 � i < n ; w (en ) = e1 :

Conversely if an automorphismF : S ! S realizes the standard Coxeter
element w = � n � 123; we can normalize the base-points such that

�
p1; p2; p3

	
=

�
(0 : 0 : 1); (0 : 1 : 0); (1 : 0 : 0)

	
;

the birational map f : P2(C) 99KP2(C) covered by F is a composition of
the standard Cremona involution and an automorphism sending (p1; p2)
onto (p2; p3): Such a mapf has the form in the a�ne chart z = 1

f (x; y) = ( a0; b0) + ( Ay; By=x )

so up to conjugacy by (Bx; By=A ); we havef (x; y) = ( a; b) + ( y; y=x):
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Automorphisms of
positive entropy: some
examples

A possibility to produce an automorphism f on a rational surface S is the
following: starting with a birational map f of P2(C); we �nd a sequence
of blow-ups � : S ! P2(C) such that the induced map f S = �f � � 1 is an
automorphism of S: The di�culty is to �nd such a sequence � ... If f is
not an automorphism of the complex projective plane, thenf contracts a
curve C1 onto a point p1; the �rst thing to do to obtain an automorphism
from f is to blow up the point p1 via � 1 : S1 ! P2(C): In the best case
f S1 = � 1f � � 1

1 sends the strict transform of C1 onto the exceptional di-
visor E1: But if p1 is not a point of indeterminacy, f S1 contracts E1 onto
p2 = f (p1): This process thus �nishes only if f is not algebraically stable.

In [21] Bedford and Kim exhibit a continuous family of birational maps
(f a)a2 Ck � 2 . We will see that this family is conjugate to automorphisms
with positive entropy on some rational surface Sa (Theorem 11.6.1). Let
us hold the parameterc �xed; the family f a induces a family of dynamical
systems of dimensionk=2� 1: there exists a neighborhoodU of 0 in Ck=2� 1

such that if a = ( a0; a2; : : : ; ak � 2), b = ( b0; b2; : : : ; bk � 2) are in U then f a

and f b are not smoothly conjugate (Theorem 11.6.3). Moreover they show,
for k � 4, the existence of a neighborhoodU of 0 in Ck=2� 1 such that if a; b
are two distinct points of U, then Sa is not biholomorphically equivalent
to Sb (Theorem 11.6.4).

The results evoked in the last section are also due to Bedford and Kim
([22]); they concern the Fatou sets of automorphisms with positive en-
tropy on rational non-minimal surfaces obtained from birational maps of
the complex projective plane. Bedford and Kim prove that such automor-

148
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phisms can have large rotation domains (Theorem 11.7.1).

11.1 Description of the sequence of blow-ups
([19])

Let f a;b be the birational map of the complex projective plane given by

f a;b (x; y; z) =
�
x(bx + y) : z(bx + y) : x(ax + z)

�
;

or in the a�ne chart x = 1

f a;b(y; z) =
�

z;
a + z
b+ y

�
:

We note that Ind f a;b = f p1; p2; p� g and Excf a;b = � 0 [ � � [ � 
 with

p1 = (0 : 1 : 0) ; p2 = (0 : 0 : 1) ; p� = (1 : � b : � a);

� 0 = f x = 0g; � � = f bx + y = 0g; � 
 = f ax + z = 0g:

� 


� B

� C

� 0

p�p2

q

� �

p1

Set Y = Bl p1 ;p2 P2; � : Y ! P2(C) and f a;b; Y = � � 1f a;b �: Let us prove
that after these two blow-ups � 0 does not belong to Excf a;b; Y :

To begin let us blow up p2: Let us set x = r 2 and y = r 2s2; then
(r 2; s2) is a system of local coordinates in which �� = f s2 + b = 0g and
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E2 = f r 2 = 0g: We remark that

(r 2; s2) ! (r 2; r 2s2)(x;y ) ! (r 2(b+ s2) : b+ s2 : ar2 + 1)

=
�

r 2(b+ s2)
ar2 + 1

;
b+ s2

ar2 + 1

�

(x;y )

!
�

r 2(b+ s2)
ar2 + 1

;
1
r 2

�

( r 2 ;s2 )
:

Thus � � is sent onto E2 and E2 sur � 0:
Let us now blow up p1: Set x = u2v2 and y = v2; the exceptional

divisor E2 is given by v2 = 0 and � 0 by u2 = 0 : We have

(u2; v2) ! (u2v2; v2)(x;y ) ! (u2v2(bu2 + 1) : bu2 + 1 : u2(au2v2 + 1))

=
�

v2(bu2 + 1)
au2v2 + 1

;
bu2 + 1

u2(au2v2 + 1)

�

(x;y )

!
�

u2v2;
bu2 + 1

u2(au2v2 + 1)

�

(u2 ;v 2 )
;

therefore E2 is sent onto � 0:
Let us set x = r 1; z = r 1s1; in the coordinates (r 1; s1) we have E1 =

f r 1 = 0g: Moreover

(r 1; s1) ! (r 1; r 1s1)(x;z ) ! (br1 + 1 : b+ s1(br1 + 1) : r 1(a + s1)) :

Hence E1 is sent onto � B :
Set x = u1v1 and z = v1; in these coordinates �0 = f u1 = 0g; E1 =

f v1 = 0g and

(u1; v1) ! (u1v1; v1)(x;z ) ! (u1(bu1v1 + 1) : bu1v1 + 1 : u1v1(au1 + 1))

=
�

u1;
u1v1(au1 + 1)

bu1v1 + 1

�

(x;z )
!

�
u1;

v1(au1 + 1)
bu1v1 + 1

�

( r 1 ;s1 )
:

So � 0 ! E1 and � � ! E2 ! � 0 ! E1 ! � B : In particular

Ind f a;b; Y = f p� g & Exc f a;b; Y = f � 
 g:

We remark that
�

H; E1; E2
	

is a basis of Pic(Y ): The exceptional
divisor E1 is sent on � B ; since p1 belongs to � B we have E1 ! � B !
� B + E 1: On the other hand E2 is sent onto � 0; as p1 and p2 belong to � 0

we have
E2 ! � 0 ! � 0 + E 1 + E 2:

Let H be a generic line ofP2(C); it is given by ` = 0 with ` = a0x+ a1y+ a2z:
Its image by f a;b; Y is a conic thus

f �
a;b; Y H = 2H �

2X

i =1

mi Ei :
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Let us �nd the mi 's. As

(r 2; s2) ! (r 2; r 2s2)(x;y ) ! (r 2(b+ s2) : b+ s2 : ar2 + 1)

! r 2

�
a0r 2(b+ s2) + a1(b+ s2) + a2(ar2 + 1)

�

and E2 = f r 2 = 0g the integer m2 is equal to 1: Since

(r 1; s1) ! (r 1; r 1s1)(x;z ) ! (br1 + 1 : b+ s1(br1 + 1) : r 1(a + s1))

! s1r 1

�
a0(bs1r 1 + 1) + a1s1(bs1r 1 + 1) + s1r 1(a + s1)

�

and E1 = f s1 = 0g we get m1 = 1 : That's why

M f a;b; Y =

2

4
2 1 1

� 1 � 1 � 1
� 1 0 � 1

3

5 :

The characteristic polynomial of M f a;b; Y is 1+ t � t3: Let us explain all the
information contained in M f a;b; Y : Let L be a line and L its class in Pic(Y ):
If L does not intersect neither E1; nor E2; then L = H : As f �

a;b; Y H =
2H � E1 � E2 the image of L by f a;b; Y is a conic which intersects E1
and E2 with multiplicity 1 : If L contains p� ; then f a;b; Y (L) is the union
of � C and a second line. Assume thatp� does not belong to L[ f a;b; Y (L) ;
then

f 2
a;b; Y (L) = M 2

f a;b

2

4
1
0
0

3

5 = 2H � E2;

in other words f 2
a;b; Y (L) is a conic which intersects E2 but not E 1: If p�

does not belong to L [ f a;b; Y (L) [ f 2
a;b; Y (L) ; then

f 3
a;b; Y (L) = M 3

f a;b

2

4
1
0
0

3

5 = 3H � E1 � E2;

i.e. f 3
a;b; Y (L) is a cubic which intersects E1 and E2 with multiplicity 1 :

If p� does not belong to

L [ f a;b; Y (L) [ : : : [ f n � 1
a;b; Y (L) ;

the iterates of f a;b; Y are holomorphic on the neighborhood of L and

(f �
a;b; Y )n (H) = f n

a;b; Y L:

The parametersa; bare saidgeneric if p� does not belong to
1[

j =0

f j
a;b; Y (L) :

Theorem 11.1.1. Assume thata and b are generic; f a;b; Y is algebraically
stable and � (f a;b ) � 1:324 is the largest eigenvalue of the characteristic
polynomial t3 � t � 1:
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11.2 Construction of surfaces and automor-
phisms ([19])

Let us consider the subsetVn of C2 given by

Vn =
�

(a; b) 2 C2
�
� f j

a;b; Y (q) 6= p� 8 0 � j � n � 1; f n
a;b; Y (q) = p�

	
:

Theorem 11.2.1. The map f a;b; Y is conjugate to an automorphism on a
rational surface if and only if (a; b) belongs toVn for some n:

Proof. If ( a; b) does not belong toVn ; Theorem 11.1.1 implies that� (f a;b )
is the largest root of t3 � t � 1; we note that � (f a;b ) is not a Salem number
so f a;b is not conjugate to an automorphism (Theorem 9.3.9).

Conversely assume that there exists an integern such that (a; b) belongs
to Vn : Let S be the surface obtained fromY by blowing up the points q;
f a;b; Y (q); : : : ; f n

a;b; Y (q) = p� of the orbit of q: We can check that the
induced map f a;b; S is an automorphism of S:

Let us now considerf �
a;b; S which will be denoted by f �

a;b :

Theorem 11.2.2. Assume that (a; b) belongs toVn for some integer n.
If n � 5; the map f a;b is periodic of period � 30: If n is equal to 6;
the degree growth off a;b is quadratic. Finally if n � 7; then

�
degf k

a;b

	
k

grows exponentially and� (f a;b ) is the largest eigenvalue of the character-
istic polynomial

� n (t) = tn +1 (t3 � t � 1) + t3 + t2 � 1:

Moreover, whenn tends to in�nity, � (f a;b) tends to the largest eigenvalue
of t3 � t � 1:

The action f a;b; S� on the cohomology is given by

E2 ! � 0 = H � E1 � E2 ! E1 ! � B = H � E1 � Q

where Q denotes the divisor obtained by blowing up the pointq which is
on � B : As p� is blown-up by f a;b on � C ; we have

Q ! f a;b (Q) ! : : : ! f n
a;b (Q) ! � C = H � E2 � Q:

Finally a generic line L intersects � 0; � � and � 
 with multiplicity 1; the
image of L is thus a conic throughq; p1 and p2 so H ! 2H � E1 � E2 � Q:
In the basis

�
H; E1; E2; Q; f a;b (Q) ; : : : ; f n

a;b (Q)
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we have

M f a;b =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

2 1 1 0 0 : : : : : : 0 1
� 1 � 1 � 1 0 0 : : : : : : 0 0
� 1 0 � 1 0 0 : : : : : : 0 � 1
� 1 � 1 0 0 0 : : : : : : 0 � 1
0 0 0 1 0 : : : : : : 0 0

0 0 0 0 1 0 : : : 0
...

...
...

...
... 0

. . .
. . .

...
...

...
...

...
...

...
. . .

. . . 0 0
0 0 0 0 0 : : : 0 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

11.3 Invariant curves ([20])

In the spirit of [74] ( see Chapter 5, x5.4) Bedford and Kim study the
curves invariant by f a;b : There exists rational maps' j : C ! C2 such that
if ( a; b) = ' j (t) for some complex numbert; then f a;b has an invariant
curve C with j irreducible components. Let us set

' 1(t) =
�

t � t3 � t4

1 + 2 t + t2
;

1 � t5

t2 + t3

�
; ' 2(t) =

�
t + t2 + t3

1 + 2 t + t2
;

t3 � 1
t + t2

�
;

' 3(t) =
�

1 + t; t �
1
t

�
:

Theorem 11.3.1. Let t be in C n f� 1; 1; 0; j ; j 2g: There exists a cubicC
invariant by f a;b if and only if (a; b) = ' j (t) for a certain 1 � j � 3; in
that caseC is described by an homogeneous polynomialPt;a;b of degree3:

Moreover, if Pt;a;b exists, it is given, up to multiplication by a constant,
by

Pt;a;b (x; y; z ) = ax3(t � 1)t4 + yz(t � 1)t(z + ty )

+ x
�

2byzt3 + y2(t � 1)t3 + z2(t � 1)(1 + bt)
�

+ x2(t � 1)t3
�

a(y + tz) + t(y + ( t � 2b)z)
�

:

More precisely we have the following description.

� If ( a; b) = ' 1(t); then � 1 = ( Pt;a;b = 0) is a irreducible cuspidal
cubic. The map f a;b has two �xed points, one of them is the singular
point of C:
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� If ( a; b) = ' 2(t); then � 2 = ( Pt;a;b = 0) is the union of a conic and a
tangent line to it. The map f a;b has two �xed points.

� If ( a; b) = ' 3(t); then � 3 = ( Pt;a;b = 0) is the union of three concur-
rent lines; f a;b has two �xed points, one of them is the intersection
of the three components ofC:

There is a relationship between the parameters (a; b) for which there
exists a complex numbert such that ' j (t) = ( a; b) and the roots of the
characteristic polynomial � n :

Theorem 11.3.2. Let n be an integer, let 1 � j � 3 be an integer and
let t be a complex number. Assume that(a; b) := ' j (t) does not belong to
any Vk for k < n: Then (a; b) belongs toVn if and only if j divides n and
t is a root of � n :

We can write � n asCn  n whereCn is the product of cyclotomic factors
and  n is the minimal polynomial of � (f a;b ):

Theorem 11.3.3. Assume that n � 7. Let t be a root of � n not equal
to 1: Then either t is a root of  n ; or t is a root of � j for some 0 � j � 5:

Bedford and Kim prove that #(� j \ V n ) is, for n � 7; determined by
the number of Galois conjugates of the unique root of n strictly greater
than 1 : if n � 7 and 1� j � 3 divides n; then

� j \ V n =
�

' j (t)
�
� t root of  n

	
;

in particular � j \ V n is not empty.
Let X be a rational surface and letg be an automorphism ofX: The

pair (X; g) is said minimal if any birational morphism � : X ! X 0 which
sends (X; g) on (X 0; g0); where g0 is an automorphism ofX 0; is an isomor-
phism. Let us recall a question of [135]. LetX be a rational surface and
let g be an automorphism of X . Assume that (X; g) is minimal. Does
there exist a negative power of the class of the canonical divisor KX which
admits an holomorphic section ? We know since [109] that the answer is
no if we remove the assumption \(X; g) minimal".

Theorem 11.3.4. There exists a surfaceS and an automorphism with
positive entropy f a;b on S such that (S; f a;b ) is minimal and such that f a;b

has no invariant curve.

If g is an automorphism of a rational surfaceX such that a negative
power of KX admits a holomorphic section,g preserves a curve; so Theo-
rem 11.3.4 gives an answer to McMullen's question.
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11.4 Rotation domains ([20])

Assume that n � 7 (so f is not periodic); if there is a rotation domain,
then its rank is 1 or 2 (Theorem 9.4.4). We will see that both happen; let
us begin with rotation domains of rank 1.

Theorem 11.4.1. Assume that n � 7: Assume that j divides n and that
(a; b) belongs to� j \ V n : There exists a complex numbert such that(a; b) =
' j (t): If t is a Galois conjugate of� (f a;b ), not equal to � (f a;b ) � 1; then f a;b

has a rotation domain of rank 1 centered in
�

t3

1 + t
;

t3

1 + t

�
if j = 1 ;

�
�

t2

1 + t
; �

t2

1 + t

�
if j = 2 ; (� t; � t) if j = 3 :

Let us now deal with those of rank 2:

Theorem 11.4.2. Let us consider an integern � 8, an integer 2 � j � 3
which divides n: Assume that (a; b) = ' j (t) and that jt j = 1; moreover
suppose thatt is a root of  n : Let us denote by� 1; � 2 the eigenvalues
of Df a;b at the point

m =
�

1 + t + t2

t + t2 ;
1 + t + t2

t + t2

�
if j = 2 ; m =

�
1 +

1
t
; 1 +

1
t

�
if j = 3 :

If j� 1j = j� 2j = 1 then f a;b has a rotation domain on rank 2 centered
at m.

There are examples where rotation domains of rank 1 and 2 coexist.

Theorem 11.4.3. Assume that n � 8, that j = 2 and that j divides n:
There exists(a; b) in � j \V n such that f a;b has a rotation domain of rank 2
centered at

�
1 + t + t2

t + t2 ;
1 + t + t2

t + t2

�
if j = 2 ;

�
1 +

1
t
; 1 +

1
t

�
if j = 3

and a rotation domain of rank 1 centered at
�

�
t2

1 + t
; �

t2

1 + t

�
if j = 2 ; (� t; � t) if j = 3 :

11.5 Weyl groups ([20])

Let us recall that E1 and E2 are the divisors obtained by blowing up p1

and p2: To simplify let us introduce some notations: E0 = H, E 3 = Q ;
E4 = f (Q) ; : : : ; En = f n � 3(Q) and let � i be the blow-up associated to Ei :
Let us set

e0 = E 0; ei = ( � i +1 : : : � n ) � Ei ; 1 � i � n;
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the basis
�

e0; : : : ; en
	

of Pic(S =) is geometric.
Bedford and Kim prove that they can apply Theorem 10.5.1 and deduce

from it the following statement.

Theorem 11.5.1. Let X be a rational surface obtained by blowing up
P2(C) in a �nite number of points � : X ! P2(C) and let F be an automor-
phism on X which represents the standard element of the Weyl groupWn ,
n � 5: There exists an automorphismA of P2(C) and some complex num-
bers a and b such that

f a;bA� = A�F:

Moreover they get that a representation of the standard element of the
Weyl group can be obtained fromf a;b; Y :

Theorem 11.5.2. Let X be a rational surface and letF be an automor-
phism on X which represents the standard element of the Weyl groupWn :
There exist

� a surface eY obtained by blowing upY in a �nite number of distinct
points � : eY ! Y;

� an automorphism g on eY ;

� (a; b) in Vn � 3

such that (F; X ) is conjugate to (g; eY ) and �g = f a;b; Y �:

11.6 Continuous families of automorphisms
with positive entropy ([21])

In [21] Bedford and Kim introduce the following family:

f a(y; z) =
�

z; � y + cz +
k � 2X

j =1
j pair

aj

yj +
1
yk

�
;

a = ( a1; : : : ; ak � 2) 2 Ck � 2; c 2 R; k � 2:

(11.6.1)

Theorem 11.6.1. Let us consider the family(f a) of birational maps given
by (11.6.1).

Let j; n be two integers relatively prime and such that1 � j � n. There
exists a non-empty subsetCn of R such that, for any evenk � 2 and for
any (c; aj ) in Cn � C; the map f a is conjugate to an automorphism of a
rational surface Sa with entropy log � n;k where log � n;k is the largest root
of the polynomial

� n;k = 1 � k
n � 1X

j =1

x j + xn :
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Let us explain brie
y the construction of Cn : The line � = f x = 0g is
invariant by f a : An element of � n f (0 : 0 : 1)g can be written as (0 : 1 :w)
and f (0 : 1 : w) =

�
0 : 1 : c � 1

w

�
: The restriction of f a to � coincides

with g(w) = c � 1
w : The set of values ofc for which g is periodic of period

n is �
2 cos(j�=n )

�
� 0 < j < n; (j; n ) = 1

	
:

Let us set ws = gs� 1(c) for 1 � s � n � 1; in other words the wi 's encode
the orbit of (0 : 1 : 0) under the action of f: The wj satisfy the following
properties:

� wj wn � 1� j = 1;

� if n is even, thenw1 : : : wn � 2 = 1;

� if n is odd, let us setw� (c) = w(n � 1)=2 then w1 : : : wn � 2 = w� :

Let us give details about the casen = 3 ; k = 2 ; then C3 = f� 1; 1g:
Assume that c = 1; in other words

f a = f =
�
xz2 : z3 : x3 + z3 � yz2�

:

The map f contracts only one line � 00= f z = 0g onto the point R = (0 :
0 : 1) and blows up exactly one point,Q = (0 : 1 : 0) : Let us describe the
sequence of blow-ups that allows us to \solve indeterminacy":

� �rst blow-up. First of all let us blow up Q in the domain and R in the
range. Let us denote by E (resp. F) the exceptional divisor obtained
by blowing up Q (resp. R). One can check that E is sent onto F; � 00

1
is contracted onto S = (0 ; 0)(a1 ;b1 ) and Q1 = (0 ; 0)(u1 ;v 1 ) is a point
of indeterminacy;

� second blow-up.Let us then blow up Q1 in the domain and S in the
range; let G; resp. H be the exceptional divisors. One can verify
that the exceptional divisor G is contracted onto T = (0 ; 0)(c2 ;d2 ) ,
� 00

2 onto T and U = (0 ; 0)( r 2 ;s2 ) is a point of indeterminacy;

� third blow-up. Let us continue by blowing up U in the domain and
T in the range, where K and L denote the associated exceptional
divisors. One can check thatW = (1 ; 0)( r 3 ;s3 ) is a point of indeter-
minacy, K is sent onto L and G1 is contracted on V = (1 ; 0)(c3 ;d3 )

and � 00
3 on V ;

� fourth blow-up. Let us blow up W in the domain and V in the
range, let M and N be the associated exceptional divisors. Then
� 00

4 is contracted on X = (0 ; 0)(c4 ;d4 ) , Y = (0 ; 0)( r 4 ;s4 ) is a point of
indeterminacy, G1 is sent onto N and M onto H;



158 Julie D�eserti

� �fth blow-up. Finally let us blow up Y in the domain and X in the
range, where � ; 
 are the associated exceptional divisors. So � 00

5 is
sent onto 
 and � onto � 00

5 :

Theorem 11.6.2. The map f =
�
xz2 : z3 : x3 + z3 � yz2

�
is conjugate to

an automorphism of P2(C) blown up in 15 points.

The �rst dynamical degree of f is 3+
p

5
2 .

Proof. Let us denote by bP1 (resp. bP2) the point in�nitely near obtained by
blowing up Q; Q1; U; W and Y (resp. R; S; T; V and X ). By following the
sequence of blow-ups we get thatf induces an isomorphism between BlbP1

P2

and Bl bP2
P2, the components being switched as follows

E ! F; � 00! 
 ; K ! L; M ! H; � ! � 00; G ! N:

A conjugate of f has positive entropy on P2(C) blown up in ` points
if ` � 10; we thus search an automorphismA of P2(C) such that (Af )2A
sends bP2 onto bP1: We remark that f (R) = (0 : 1 : 1) and f 2(R) = Q then
that f 2( bP2) = bP1 so A = id is such that ( Af )2A sends bP2 onto bP1:

The components are switched as follows

� 00! f 
 ; E ! f F; G ! f N; K ! f L; M ! f H;

� ! f � 00; f F ! f 2F; f N ! f 2N; f L ! f 2L; f H ! f 2H;

f 
 ! f 2
 ; f 2F ! E; f 2N ! G; f 2L ! K; f 2H ! M;

f 2
 ! � :

Therefore the matrix of f � is given in the basis

f � 00; E; G; K; M; � ; f F; f N; f L; f H; f 
 ; f 2F; f 2N; f 2L; f 2H; f 2
 g
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by

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 � 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 � 3 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 � 3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 � 2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 � 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

the largest root of the characteristic polynomial

(X 2 � 3X + 1)( X 2 � X + 1)( X + 1) 2(X 2 + X + 1) 3(X � 1)4

is 3+
p

5
2 ; i.e. the �rst dynamical degree of f is 3+

p
5

2 : Let us remark that
the polynomial � 3;2 introduced in Theorem 11.6.1 is 1� 2X � 2X 2 + X 3

whose the largest root is3+
p

5
2 :

The considered family of birational maps is not trivial, i.e. parameters
are e�ective.

Theorem 11.6.3. Let us hold the parameterc 2 Cn �xed. The family
of maps (f a) de�ned by (11.6.1) induces a family of dynamical systems of
dimension k=2� 1: In other words there is a neighborhoodU of 0 in Ck=2� 1

such that if a = ( a0; a2; : : : ; ak � 2), b = ( b0; b2; : : : ; bk � 2) are in U then f a

and f b are not smoothly conjugate.

Idea of the proof. Such a mapf a has k + 1 �xed points p1; : : : ; pk+1 : Let
us set a = ( a1; : : : ; ak � 2): Bedford and Kim show that the eigenvalues of
Df a at pj (a) depend on a; it follows that the family varies non trivially
with a. More precisely they prove that the trace of Df a varies in a non-
trivial way. Let � j (a) denote the trace ofDf a at pj (a) and let us consider
the map T de�ned by

a 7! T(a) = ( � 1(a); : : : ; � k+1 (a)) :
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The rank of the map T is equal to k
2 � 1 at a = 0 : In fact the �xed

points of f a can be written (� s; � s) where � s is a root of

� = ( c � 1)� +
k � 2X

j =1
j pair

aj

� j +
1
� k : (11.6.2)

When a is zero, we have for any �xed point � k+1 = 1
2� c : By di�erentiating

(11.6.2) with respect to a` we get for a = 0 the equality
�

2 � c +
k

� k+1

�
@�
@à

=
1
� ` ;

this implies that
@�
@à

�
�
�
a=0

=
1

(2 � c)(k + 1) � ` :

The trace of Df a( y;z ) is given by

� = c �
k � 2X

j =1
j pair

ja j

yj +1 �
k

yk+1 :

For y = � a we have

@�(� a)
@à

�
�
�
a=0

= �
`

y` +1 +
k(k + 1)

yk+2

@�a
@à

= �
`

y` +1 +
k

2 � c
1

� k+1 � ` +1

= �
`

y` +1 +
k

y� ` =
k � `
� ` +1 :

If we let � j range over k
2 � 1 distinct choices of roots 1

(2 � c) k +1 ; the

matrix essentially is a (k
2 � 1) � ( k

2 � 1) Vandermondian and so of rank
k
2 � 1:

There exists a neighborhoodU of 0 in C
k
2 � 1 such that, for any a,

b in U with a 6= b, the map f a is not di�eomorphic to f b: In fact the
map C

k
2 � 1 ! Ck+1 ; a 7! T(a) is locally injective in a neighborhood of

0: Moreover, for a = 0, the �xed points p1; : : : ; pk+1 ; and so the values
� 1(0); : : : ; � k+1 (0); are distinct. Thus C

k
2 � 1 3 a 7! f � 1(a); : : : ; � k+1 (a)g

is locally injective in 0: So if U is a su�ciently small neighborhood of 0
and if a and b are two distinct elements ofU, the sets of multipliers at the
�xed points are not the same; it follows that f a and f b are not smoothly
conjugate.

Let f a be a map which satis�es Theorem 11.6.1. Bedford and Kim
show that for all the cases under their consideration the representation

Aut(S a) ! GL(Pic(Sa)) ; � 7! � �
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is at most ((k2 � 1) : 1); moreover if ak � 2 is non zero, it is faithful.
When n = 2 ; the image of Aut(Sa) ! GL(Pic(Sa)) ; � 7! � � coincides with
elements of GL(Pic(Sa)) that are isometries with respect to the intersec-
tion product, and which preserve the canonical class of Sa as well as the
semigroup of e�ective divisors; this subgroup is the in�nite dihedral group
with generators f a � and � � where � denotes the re
ection (x; y) 7! (y; x).
They deduce from it that, always for n = 2 ; the surfaces Sa are, in general,
not biholomorphically equivalent.

Theorem 11.6.4. Assume that n = 2 and that k � 4 is even. Let a be
in Ck=2� 1 and c be in C2. There exists a neighborhoodU of 0 in Ck=2� 1

such that if a; bare two distinct points of U and if ak � 1 is nonzero, thenSa

is not biholomorphically equivalent toSb:

11.7 Dynamics of automorphisms with posi-
tive entropy: rotation domains ([22])

If S is a compact complex surface carrying an automorphism with positive
entropy f , a theorem of Cantat (Theorem 9.3.4) says that

� either f is conjugate to an automorphism of the unique minimal
model of S which has to be a torus, a K3 surface or an Enriques
surface;

� or f is birationally conjugate to a birational map of the complex
projective plane ([40]).

We also see that if S is a complex torus, the Fatou set off is empty.
If S is a K3 surface or a quotient of a K3 surface, the existence of a volume
form implies that the only possible Fatou components are the rotation
domains. McMullen proved the existence of non-algebraic K3 surfaces with
rotation domains of rank 2 (see[134]). What happen if S is a rational non-
minimal surface ? The automorphisms with positive entropy on rational
non-minimal surfaces can have large rotation domains.

Theorem 11.7.1. There exists a rational surfaceS carrying an automor-
phism with positive entropy h and a rotation domain U: Moreover, U is a
union of invariant Siegel disks, h acting as an irrational rotation on any
of these disks.

The linearization is a very good tool to prove the existence of rotation
domains but it is a local technique. In order to understand the global
nature of the Fatou component U; Bedford and Kim introduce a global
model and get the following statement.
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Theorem 11.7.2. There exist a surfaceL obtained by blowing upP2(C)
in a �nite number of points, an automorphism L on L ; a domain 
 of L
and a biholomorphic conjugacy� : U ! 
 which sends(h; U) onto (L; L ):

In particular, h has no periodic point on U n fz = 0g:

Let us consider forn; m � 1 the polynomial

Pn;m (t) =
t(tnm � 1)(tn � 2tn � 1 + 1)

(tn � 1)(t � 1)
+ 1 :

If n � 4; m � 1 or if n = 3 ; m � 2 this polynomial is a Salem polynomial.

Theorem 11.7.3. Let us consider the birational mapf given in the a�ne
chart z = 1 by

f (x; y) =
�

y; � �x + cy +
1
y

�

where� is a root of Pn;m which is not a root of unity and c = 2
p

� cos(j�=n )
with 1 � j � n � 1; (j; n ) = 1 .

There exists a rational surface S obtained by blowing upP2(C) in a
�nite number of points � : S ! P2(C) such that � � 1f � is an automorphism
on S:

Moreover, the entropy of f is the largest root of the polynomialPn;m :

Bedford and Kim use the pair (f k ; S) to prove the statements 11.7.1
and 11.7.2.



Chapter 12

A \systematic" way to
construct automorphisms
of positive entropy

This section is devoted to a \systematic" construction of examples of ra-
tional surfaces with biholomorphisms of positive entropy. The strategyis
the following: start with a birational map f of P2(C): By the standard
factorization theorem for birational maps on surfaces as a composition of
blow-ups and blow-downs, there exist two sets of (possibly in�nitely near)
points bP1 and bP2 in P2(C) such that f can be lifted to an automorphism
between BlbP1

P2 and Bl bP2
P2: The data of bP1 and bP2 allows to get auto-

morphisms of rational surfaces in the left PGL3(C)-orbit of f : assume
that k 2 N is �xed and let ' be an element of PGL3(C) such that bP1;
' bP2; ('f )' bP2; : : : ; ('f )k � 1 ' bP2 have all distinct supports in P2(C) and
('f )k ' bP2 = bP1: Then 'f can be lifted to an automorphism ofP2(C) blown
up at bP1; ' bP2; ('f )' bP2; : : : ; ('f )k � 1 ' bP2: Furthermore, if the conditions
above are satis�ed for a holomorphic family of '; we get a holomorphic
family of rational surfaces (whose dimension is at most eight). Therefore,
we see that the problem of lifting an element in the PGL3(C)-orbit of f to
an automorphism is strongly related to the equationu( bP2) = bP1; where u
is a germ of biholomorphism ofP2(C) mapping the support of bP2 to the
support of bP1: In concrete examples, whenbP1 and bP2 are known, this equa-
tion can actually be solved and involves polynomial equations in the Taylor
expansions ofu at the various points of the support of bP2: It is worth point-
ing out that in the generic case, bP1 and bP2 consist of the same numberd of
distinct points in the projective plane, and the equation u( bP2) = bP1 gives
2d independent conditions onu (which is the maximum possible number

163
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if bP1 and bP2 have length d). Conversely, in�nitely near points can consid-
erably decrease the number of conditions onu as shown in our examples.
This explains why holomorphic families of automorphisms of rational sur-
faces occur when blow-ups on in�nitely near point are made. We illustrate
the method on two examples.

We end the chapter with a summary about the current knowledge on
automorphisms of rational surfaces with positive entropy.

12.1 Birational maps whose exceptional
locus is a line

Let us consider the birational map de�ned by

� n =
�
xzn � 1 + yn : yzn � 1 : zn �

; n � 3:

The sequence (deg �kn )k2 N is bounded (it's easy to see in the a�ne chart
z = 1), so � n is conjugate to an automorphism on some rational surface S
and an iterate of � n is conjugate to an automorphism isotopic to the
identity ([73]). The map � n blows up one point P = (1 : 0 : 0) and blows
down one curve � = f z = 0g:

Here we will assume that n = 3 but the construction is similar for
n � 4 (see [69]). We �rst construct two in�nitely near points bP1 and bP2

such that � 3 induces an isomorphism between BlbP1
P2 and Bl bP2

P2: Then
we give \theoretical" conditions to produce automorphisms ' of P2(C)
such that ' � 3 is conjugate to an automorphism on a surface obtained
from P2(C) by successive blow-ups.

12.1.1 First step: description of the sequence of
blow-ups

First blow up the point P in the domain and in the range. Sety = u1

and z = u1v1; remark that ( u1; v1) are coordinates nearP1 = (0 ; 0)(u1 ;v 1 ) ;
coordinates in which the exceptional divisor is given by E = f u1 = 0g
and the strict transform of � is given by � 1 = f v1 = 0g: Set y = r 1s1

and z = s1; note that ( r 1; s1) are coordinates nearQ = (0 ; 0)( r 1 ;s1 ) ;
coordinates in which E = f s1 = 0g: We have

(u1; v1) ! (u1; u1v1)(y;z ) !
�
v2

1 + u1 : v2
1u1 : v3

1u1
�

=
�

v2
1u1

v2
1 + u1

;
v3

1u1

v2
1 + u1

�

(y;z )
!

�
v2

1u1

v2
1 + u1

; v1

�

(u1 ;v 1 )
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and

(r 1; s1) ! (r 1s1; s1)(y;z ) !
�
1 + r 3

1s1 : r 1s1 : s1
�

=
�

r 1s1

1 + r 3
1s1

;
s1

1 + r 3
1s1

�

(y;z )

!
�

r 1;
s1

1 + r 3
1s1

�

( r 1 ;s1 )
;

therefore P1 is a point of indeterminacy, � 1 is blown down to P1 and E is
�xed.

Let us blow up P1 in the domain and in the range. Setu1 = u2 and
v1 = u2v2: Note that ( u2; v2) are coordinates aroundP2 = (0 ; 0)(u2 ;v 2 ) in
which � 2 = f v2 = 0g and F = f u2 = 0g: If we set u1 = r 2s2 and v1 = s2

then (r 2; s2) are coordinates nearA = (0 ; 0)( r 2 ;s2 ) ; in these coordinates
F = f s2 = 0g: Moreover

(u2; v2) ! (u2; u2v2)(u1 ;v 1 ) !
�
1 + u2v2

2 : u2
2v2

2 : u3
2v3

2

�

and
(r 2; s2) ! (r 2s2; s2)( r 1 ;s1 ) !

�
r 2 + s2 : r 2s2

2 : r 2s3
2

�
:

Remark that A is a point of indeterminacy. We also have

(u2; v2) ! (u2; u2v2)(u1 ;v 1 ) !
�
1 + u2v2

2 : u2
2v2

2 : u3
2v3

2

�

!
�

u2
2v2

2

1 + u2v2
2

;
u3

2v3
2

1 + u2v2
2

�

(y;z )

!
�

u2
2v2

2

1 + u2v2
2

; u2v2

�

(u1 ;v 1 )

!
�

u2v2

1 + u2v2
2

; u2v2

�

( r 2 ;s2 )

so F and � 2 are blown down to A:

Now let us blow up A in the domain and in the range. Set r 2 = u3

and s2 = u3v3; (u3; v3) are coordinates nearA1 = (0 ; 0)(u3 ;v 3 ) ; coordi-
nates in which F1 = f v3 = 0g and G = f u3 = 0g: If r 2 = r 3s3 and
s2 = s3; then (r 3; s3) is a system of coordinates in which E2 = f r 3 = 0g
and G = f s3 = 0g: We have

(u3; v3) ! (u3; u3v3)( r 2 ;s2 ) !
�
1 + v3 : u2

3v2
3 : u3

3v3
3

�
;

(r 3; s3) ! (r 3s3; s3)( r 2 ;s2 ) !
�
1 + r 3 : r 3s2

3 : r 3s3
3

�
:
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The point T = ( � 1; 0)( r 3 ;s3 ) is a point of indeterminacy. Moreover

(u3; v3) !
�

u2
3v2

3

1 + v3
;

u3
3v3

3

1 + v3

�

(y;z )
!

�
u2

3v2
3

1 + v3
; u3v3

�

(u1 ;v 1 )

!
�

u3v3

1 + v3
; u3v3

�

( r 2 ;s2 )
!

�
1

1 + v3
; u3v3

�

( r 3 ;s3 )
;

so G is �xed and F1 is blown down to S = (1 ; 0)( r 3 ;s3 ) :

Let us blow up T in the domain and S in the range. Setr 3 = u4 � 1 and
s3 = u4v4; in the system of coordinates (u4; v4) we have G1 = f v4 = 0g
and H = f u4 = 0g: Note that ( r 4; s4); where r 3 = r 4s4 � 1 and s3 = s4; is
a system of coordinates in which H =f s4 = 0g: On the one hand

(u4; v4) ! (u4 � 1; u4v4)( r 3 ;s3 ) !
�
(u4 � 1)u4v2

4 ; (u4 � 1)u2
4v3

4

�
(y;z )

!
�
(u4 � 1)u4v2

4 ; u4v4
�

(u1 ;v 1 ) !
�
(u4 � 1)v4; u4v4

�
( r 2 ;s2 )

!
�

(u4 � 1)v4;
u4

u4 � 1

�

(u3 ;v 3 )

so H is sent on F2. On the other hand

(r 4; s4) ! (r 4s4 � 1; s4)( r 3 ;s3 ) !
�
r 4 : (r 4s4 � 1)s4 : (r 4s4 � 1)s2

4

�
;

henceB = (0 ; 0)( r 4 ;s4 ) is a point of indeterminacy.

Set r 3 = a4 +1 ; s3 = a4b4; (a4; b4) are coordinates in which G1 = f b4 =
0g and K = f a4 = 0g: We can also setr 3 = c4d4 + 1 and s3 = d4; in the
system of coordinates (c4; d4) the exceptional divisor K is given by d4 = 0 :

Note that

(u3; v3) !
�

1
1 + v3

; u3v3

�

( r 3 ;s3 )
!

�
�

v3

1 + v3
; � u3(1 + v3)

�

(a4 ;b4 )
;

thus F2 is sent on K:
We remark that

(u1; v1) !
�
v2

1 + u1 : u1v2
1 : u1v3

1

�
=

�
u1v2

1

u1 + v2
1

;
u1v3

1

u1 + v2
1

�

(y;z )

!
�

u1v2
1

u1 + v2
1

; v1

�

(u1 ;v 1 )
!

�
u1v1

u1 + v2
1

; v1

�

( r 2 ;s2 )

!
�

u1

u1 + v2
1

; v1

�

( r 3 ;s3 )
!

�
�

v1

u1 + v2
1

; v1

�

(c4 ;d4 )
;

so � 4 is blown down to C = (0 ; 0)(c4 ;d4 ) :
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Now let us blown up B in the domain and C in the range. Set r 4 = u5;
s4 = u5v5 and r 4 = r 5s5; s4 = s5: Then (u5; v5) (resp. (r 5; s5)) is a
system of coordinates in which L = f u5 = 0g (resp. H1 = f v5 = 0g and
L = f s5 = 0g). We note that

(u5; v5) ! (u5; u5v5)( r 4 ;s4 ) !
�
1 : v5(u2

5v5 � 1) : u5v2
5(u2

5v5 � 1)
�

and

(r 5; s5) ! (r 5s5; s5)( r 4 ;s4 ) !
�
r 5 : r 5s2

5 � 1 : s5(r 5s2
5 � 1)

�
:

Therefore L is sent on � 5 and there is no point of indeterminacy.
Set c4 = a5; d4 = a5b5 and c4 = c5d5; d4 = d5: In the �rst (resp.

second) system of coordinates the exceptional divisor M is given byf a5 =
0g (resp. f d5 = 0g). We have

(u1; v1) !
�

�
v1

u1 + v2
1

; v1

�

(c4 ;d4 )
!

�
�

1
u1 + v2

1
; v1

�

(c5 ;d5 )
;

in particular � 5 is sent on M:

Proposition 12.1.1 ([69]). Let bP1 (resp. bP2) be the point in�nitely near
P obtained by blowing upP2(C) at P; P1; A; T and U (resp. P; P1; A; S
and U0).

The map � 3 induces an isomorphism betweenBl bP1
P2 and Bl bP2

P2:

The di�erent components are swapped as follows

� ! M; E ! E; F ! K; G ! G; H ! F; L ! � :

12.1.2 Second step: gluing conditions

The gluing conditions reduce to the following problem: if u is a germ of
biholomorphism in a neighborhood ofP; �nd the conditions on u in order
that u( bP2) = bP1:

Proposition 12.1.2 ([69]). Let u(y; z)=(
X

( i;j )2 N2

mi;j yi zj ;
X

( i;j )2 N2

ni;j yi zj )

be a germ of biholomorphism atP:
Then u can be lifted to a germ of biholomorphism betweenBl bP2

P2

and Bl bP1
P2 if and only if

m0;0 = n0;0 = n1;0 = m3
1;0 + n2

0;1 = 0 ; n2;0 =
3m0;1n0;1

2m1;0
:
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12.1.3 Examples

In this section, we will use the two above steps to produce explicit examples
of automorphisms of rational surfaces obtained from birational maps in the
PGL3(C)-orbit of � 3: As we have to blow up P2(C) at least ten times to
have non zero-entropy, we want to �nd an automorphism ' of P2(C) such
that

(' � 3)k ' ( bP2) = bP1 with ( k + 1)(2 n � 1)

� 10(' � 3) i ' (P) 6= P for 0 � i � k � 1
(12.1.1)

First of all let us introduce the following de�nition.

De�nition 12.1.3. Let U be an open subset ofCn and let ' : U !
PGL3(C) be a holomorphic map. Iff is a birational map of the projective
plane, we say that the family of birational maps(' � 1 ; :::; � n f )( � 1 ; :::; � n )2 U

is holomorphically trivial if for every � 0 = ( � 0
1; : : : ; � 0

n ) in U there ex-
ists a holomorphic map from a neighborhoodU� 0 of � 0 to PGL3(C) such
that

� M � 0
1 ; :::; � 0

n
= Id ;

� 8 (� 1; : : : ; � n )2U� 0 ; ' � 1 ; :::; � n f = M � 1 ; :::; � n (' � 0
1 ; :::; � 0

n
f )M � 1

� 1 ; :::; � n
:

Theorem 12.1.4. Let ' � be the automorphism of the complex projective
plane given by

' � =

2

4
� 2(1 � � ) (2 + � � � 2)

� 1 0 (� + 1)
1 � 2 (1 � � )

3

5 ; � 2 C n f 0; 1g:

The map ' � � 3 is conjugate to an automorphism ofP2(C) blown up
in 15 points.

The �rst dynamical degree of ' � � 3 is 3+
p

5
2 > 1:

The family ' � � 3 is holomorphically trivial.

Proof. The �rst assertion is given by Proposition 12.1.2.
The di�erent components are swapped as follows (x12.1.1)

� ! ' � M; E ! ' � E; F ! ' � K;

G ! ' � G; H ! ' � F; L ! ' � � ;

' � E ! ' � � 3 ' � E; ' � F ! ' � � 3 ' � F; ' � G ! ' � � 3 ' � G;

' � K ! ' � � 3 ' � K; ' � M ! ' � � 3 ' � M; ' � � 3 ' � E ! E;

' � � 3 ' � F ! F; ' � � 3 ' � G ! G; ' � � 3 ' � K ! H;

' � � 3 ' � M ! L:
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So, in the basis

�
� ; E; F; G; H; L; ' � E; ' � F; ' � G; ' � K; ' � M ' � � 3 ' � E;

' � � 3 ' � F; ' � � 3 ' � G; ' � � 3 ' � K; ' � � 3 ' � M
	

;

the matrix of ( ' � � 3) � is

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 � 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 � 2 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 � 3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 � 3 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 � 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

and its characteristic polynomial is

(X 2 � 3X + 1)( X 2 � X + 1)( X + 1) 2(X 2 + X + 1) 3(X � 1)4:

Thus

� (' � � 3) =
3 +

p
5

2
> 1:

Fix a point � 0 in Cnf 0; 1g: We can �nd locally around � 0 a matrix M �

depending holomorphically on� such that for all � near � 0 we have

' � � 3 = M � 1
� ' � 0 � 3M � :

if � is a local holomorphic solution of the equation� = � n � 0 such that
� 0 = 1 we can take

M � =

2

4
1 0 � 0 � �
0 1 0
0 0 1

3

5 :
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12.2 A birational cubic map blowing down
one conic and one line

Let  denote the following birational map

 =
�
y2z : x(xz + y2) : y(xz + y2)

�
;

it blows up two points and blows down two curves, more precisely

Ind  =
�

R = (1 : 0 : 0) ; P = (0 : 0 : 1)
	

;

Exc  =
�
C =

�
xz + y2 = 0

	�
[

�
� 0 =

�
y = 0

	�
:

We can verify that  � 1 = ( y(z2 � xy) : z(z2 � xy) : xz2) and

Ind  � 1 =
�

Q = (0 : 1 : 0) ; R
	

;

Exc  � 1 =
�
C0 =

�
z2 � xy = 0

	�
[

�
� 00=

�
z = 0

	�
:

The sequence of blow-ups is a little bit di�erent; let us describe it. Denote
by � the line x = 0.

� First we blow up R in the domain and in the range and denote by
E the exceptional divisor. We can show thatC1 = f u1 + v1 = 0g is
sent on E; E is blown down to Q = (0 : 1 : 0) and S = E \ � 00

1 is a
point of indeterminacy.

� Next we blow up P in the domain and Q in the range and denote
by F (resp. G) the exceptional divisor associated withP (resp. Q).
We can verify that F is sent on C0

2; E1 is blown down to T = G \ � 2

and � 0
2 is blown down to T:

� Then we blow up S in the domain and T in the range and denote
by H (resp. K) the exceptional divisor obtained by blowing up S
(resp. T). We can show that H is sent on K; E2; � 0

3 are blown down
to a point V on K and there is a point of indeterminacy U on H:

� We will now blow up U in the domain and V in the range; let
L (resp. M) be the exceptional divisor obtained by blowing up U
(resp. V ). There is a point of indeterminacy Y on L; L is sent on
G2; E3 on M and � 0

4 is blown down to a point Z of M:

� Finally we blow up Y in the domain and Z in the range. We have: � 0
5

is sent on 
 and N on � 00
5 ; where 
 (resp. N) is the exceptional divisor

obtained by blowing up Z (resp. Y ).
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Proposition 12.2.1. Let bP1 (resp. bP2) denote the point in�nitely near R
(resp. Q) obtained by blowing upR; S; U and Y (resp. Q; T; V and Z ).
The map  induces an isomorphism betweenBl bP1 ;P P2 and Bl bP2 ;R P2: The
di�erent components are swapped as follows:

C ! E; F ! C 0; H ! K; L ! G; E ! M; � 0 ! 
 ; N ! � 00:

The following statement gives the gluing conditions.

Proposition 12.2.2. Let u(x; z) =

0

@
X

( i;j )2 N2

mi;j x i zj ;
X

( i;j )2 N2

ni;j x i zj

1

A

be a germ of biholomorphism atQ:
Then u can be lifted to a germ of biholomorphism betweenBl bP2

P2 and
Bl bP1

P2 if and only if

� m0;0 = n0;0 = 0;

� n0;1 = 0;

� n0;2 + n1;0 + m2
0;1 = 0;

� n0;3 + n1;1 + 2m0;1(m0;2 + m1;0) = 0 :

Let ' be an automorphism ofP2: We will adjust ' such that (' )k '
sends bP2 onto bP1 and R onto P: As we have to blow up P2 at least ten
times to have nonzero entropy,k must be larger than two,

bP1; ' bP2; ' ' bP2; (' )2 ' bP2; : : : ; (' )k � 1 ' bP2

must all have distinct supports and (' )k ' bP2 = bP1: We provide such
matrices for k = 3; then by Proposition 12.2.2 we have the following state-
ment.

Theorem 12.2.3. Assume that  =
�

y2z : x(xz + y2) : y(xz + y2)
�

and
that

' � =

2

6
6
6
4

2� 3

343 (37i
p

3 + 3) � � 2� 2

49 (5i
p

3 + 11)

� 2

49 (� 15 + 11i
p

3) 1 � �
14 (5i

p
3 + 11)

� �
7 (2i

p
3 + 3) 0 0

3

7
7
7
5

; � 2 C� :

The map ' �  is conjugate to an automorphism ofP2 blown up in15 points.
The �rst dynamical degree of ' �  is � (' �  ) = 3+

p
5

2 :
The family ' �  is locally holomorphically trivial.
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Proof. In the basis
�

� 0; E; F; H; L; N; ' � E; ' � G; ' � K; ' � M; ' � 
 ;

' �  ' � E; ' �  ' � G; ' �  ' � K; ' �  ' � M; ' �  ' � 

	

the matrix M of (' �  ) � is
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 � 1 0 0 � 1 0 0 0 0 0 0 0 0 0 0
0 0 � 1 0 1 � 1 0 0 0 0 0 0 0 0 0 0
0 0 � 2 1 0 � 1 0 0 0 0 0 0 0 0 0 0
0 1 � 3 0 0 � 1 0 0 0 0 0 0 0 0 0 0
1 0 � 4 0 0 � 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Its characteristic polynomial is

(X � 1)4(X + 1) 2(X 2 � X + 1)( X 2 + X + 1) 3(X 2 � 3X + 1) :

Hence� (' �  ) = 3+
p

5
2 :

Fix a point � 0 in C� : We can �nd locally around � 0 a matrix M �

depending holomorphically on � such that for all � near � 0; we have
' �  = M � 1

� ' � 0  M � : take

M � =

2

6
4

1 0 0
0 �

� 0
0

0 0 � 2

� 2
0

3

7
5 :

12.3 Scholium

There are now two di�erent points of view to construct automorphisms
with positive entropy on rational non-minimal surfaces obtained from bi-
rational maps of the complex projective plane.
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The �rst one is to start with birational maps of P2(C) and to adjust
their coe�cients such that after a �nite number of blow-ups the maps
become automorphisms on some rational surfaces S. Then we compute
the action of these maps on the Picard group of S and in particular obtain
the entropy. There is a systematic way to do explained in [69] and applied
to produce examples. Using examples coming from physicists Bedford and
Kim

� exhibit continuous families of birational maps conjugate to automor-
phisms with positive entropy on some rational surfaces;

� show that automorphisms with positive entropy on rational non-
minimal surfaces obtained from birational maps ofP2(C) can have
large rotation domains and that rotation domains of rank 1 and 2
coexist.

Let us also mention the idea of [72]: the author begins with a quadratic
birational map that �xes some cubic curve and then use the \group law" on
the cubic to understand when the indeterminacy and exceptional behavior
of the transformation can be eliminated by repeated blowing up.

The second point of view is to construct automorphisms on some ratio-
nal surfaces prescribing the action of the automorphisms on cohomological
groups; this is exactly what does McMullen in [135]: forn � 10; the stan-
dard element of the Weyl group Wn can be realized by an automorphismf n

with positive entropy log( � n ) of a rational surface Sn : This result has been
improved in [169]:

�
� (f ) j f is an automorphism on some rational surface

	

=
�

spectral radius of w � 1 j w 2 Wn ; n � 3
	

:

In [44] the authors classify rational surfaces for which the image of the
automorphisms group in the group of linear transformations of the Picard
group is the largest possible; it can be rephrased in terms of periodic orbits
of birational actions of in�nite Coxeter groups.
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